Abstract

We discuss thermal fixing as a solution to the volatility problem in holographic storage systems that use photorefractive materials such as LiNbO3:Fe. We present a systematic study to characterize the effect of thermal fixing on the error performance of a large-scale holographic memory. We introduce a novel, to our knowledge, incremental fixing schedule to improve the overall system fixing efficiency. We thermally fixed 10,000 holograms in a 90°-geometry setup by using this new schedule. All the fixed holograms were retrieved with no errors.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1991).
    [CrossRef]
  2. D. Psaltis, F. H. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
    [CrossRef]
  3. J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
    [CrossRef]
  4. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  5. W. Bollmann, H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
    [CrossRef]
  6. H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
    [CrossRef]
  7. S. Klauer, M. Wöhlecke, S. Kapphan, “Isotopic effect protonic conductivity in LiNbO3,” Radiat. Effects Defects Solids 119, 699–704 (1991).
    [CrossRef]
  8. W. Meyer, P. Würfel, R. Munser, G. Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
    [CrossRef]
  9. P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
    [CrossRef]
  10. M. Carrascosa, F. Agullo-Lopez, “Theoretical modeling of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).
    [CrossRef]
  11. A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
    [CrossRef] [PubMed]
  12. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  13. D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
    [CrossRef]
  14. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617 (1996).
    [CrossRef] [PubMed]
  15. X. An, D. Psaltis, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” paper presented at the Optical Society of America Annual Meeting, Rochester, New York, 10–24 October 1996, paper MAAA5.
  16. S. Orlov, “Holographic storage dynamics, phase conjugation, and nonlinear optics in photorefractive materials,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1996).
  17. G. Burr, X. An, D. Psaltis, F. Mok, “Large-scale rapid access holographic memory,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S. Tyan, eds., Proc. SPIE2514, 363–371 (1995).
    [CrossRef]
  18. The authors, along with F. H. Mok, are preparing the following paper for publication: “Large-scale random-access holographic memory using LiNbO3:Fe.”
  19. D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
    [CrossRef] [PubMed]
  20. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  21. G. W. Burr, D. Psaltis, “Effect of the oxidation-state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996).
    [CrossRef] [PubMed]

1996 (2)

1995 (2)

1994 (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef]

1991 (2)

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1991).
[CrossRef]

S. Klauer, M. Wöhlecke, S. Kapphan, “Isotopic effect protonic conductivity in LiNbO3,” Radiat. Effects Defects Solids 119, 699–704 (1991).
[CrossRef]

1990 (2)

1988 (1)

1987 (1)

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

1981 (1)

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

1979 (2)

W. Meyer, P. Würfel, R. Munser, G. Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

1977 (1)

W. Bollmann, H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
[CrossRef]

1975 (1)

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

1971 (1)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Agullo-Lopez, F.

Amodei, J. J.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

An, X.

X. An, D. Psaltis, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” paper presented at the Optical Society of America Annual Meeting, Rochester, New York, 10–24 October 1996, paper MAAA5.

G. Burr, X. An, D. Psaltis, F. Mok, “Large-scale rapid access holographic memory,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S. Tyan, eds., Proc. SPIE2514, 363–371 (1995).
[CrossRef]

Bashaw, M. C.

Bollmann, W.

W. Bollmann, H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
[CrossRef]

Brady, D.

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[CrossRef] [PubMed]

D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[CrossRef]

Burke, W. J.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Burr, G.

G. Burr, X. An, D. Psaltis, F. Mok, “Large-scale rapid access holographic memory,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S. Tyan, eds., Proc. SPIE2514, 363–371 (1995).
[CrossRef]

Burr, G. W.

Carrascosa, M.

Daiber, A. J.

Gu, X. G.

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[CrossRef] [PubMed]

Heanue, J. F.

Hertel, P.

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Hesselink, L.

Kapphan, S.

S. Klauer, M. Wöhlecke, S. Kapphan, “Isotopic effect protonic conductivity in LiNbO3,” Radiat. Effects Defects Solids 119, 699–704 (1991).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Klauer, S.

S. Klauer, M. Wöhlecke, S. Kapphan, “Isotopic effect protonic conductivity in LiNbO3,” Radiat. Effects Defects Solids 119, 699–704 (1991).
[CrossRef]

Krätzig, E.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Leyva, V.

Lin, S.

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[CrossRef] [PubMed]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Meyer, W.

W. Meyer, P. Würfel, R. Munser, G. Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

Mok, F.

G. Burr, X. An, D. Psaltis, F. Mok, “Large-scale rapid access holographic memory,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S. Tyan, eds., Proc. SPIE2514, 363–371 (1995).
[CrossRef]

Mok, F. H.

D. Psaltis, F. H. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef]

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1991).
[CrossRef]

The authors, along with F. H. Mok, are preparing the following paper for publication: “Large-scale random-access holographic memory using LiNbO3:Fe.”

Müller-Vogt, G.

W. Meyer, P. Würfel, R. Munser, G. Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

Munser, R.

W. Meyer, P. Würfel, R. Munser, G. Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Orlov, S.

A. Yariv, S. Orlov, G. Rakuljic, V. Leyva, “Holographic fixing, readout, and storage dynamics in photorefractive materials,” Opt. Lett. 20, 1334–1336 (1995).
[CrossRef] [PubMed]

S. Orlov, “Holographic storage dynamics, phase conjugation, and nonlinear optics in photorefractive materials,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1996).

Phillips, W.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

Psaltis, D.

G. W. Burr, D. Psaltis, “Effect of the oxidation-state of LiNbO3:Fe on the diffraction efficiency of multiple holograms,” Opt. Lett. 21, 893–895 (1996).
[CrossRef] [PubMed]

D. Psaltis, F. H. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef]

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[CrossRef] [PubMed]

D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
[CrossRef]

G. Burr, X. An, D. Psaltis, F. Mok, “Large-scale rapid access holographic memory,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S. Tyan, eds., Proc. SPIE2514, 363–371 (1995).
[CrossRef]

X. An, D. Psaltis, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” paper presented at the Optical Society of America Annual Meeting, Rochester, New York, 10–24 October 1996, paper MAAA5.

Rakuljic, G.

Ringhofer, K. H.

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Snyder, R.

Sommerfeldt, R.

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Staebler, D. L.

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Stöhr, H. J.

W. Bollmann, H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Vormann, H.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Wagner, K.

Weber, G.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Wöhlecke, M.

S. Klauer, M. Wöhlecke, S. Kapphan, “Isotopic effect protonic conductivity in LiNbO3,” Radiat. Effects Defects Solids 119, 699–704 (1991).
[CrossRef]

Würfel, P.

W. Meyer, P. Würfel, R. Munser, G. Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

Yariv, A.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. L. Staebler, W. J. Burke, W. Phillips, J. J. Amodei, “Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3,” Appl. Phys. Lett. 26, 182–184 (1975).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage electrooptic crystals. I. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

D. Psaltis, D. Brady, X. G. Gu, S. Lin, “Holography in artificial neural networks,” Nature 343, 325–330 (1990).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Status Solidi A (3)

W. Bollmann, H. J. Stöhr, “Incorporation and mobility of OH- ions in LiNbO3 crystals,” Phys. Status Solidi A 39, 477–484 (1977).
[CrossRef]

W. Meyer, P. Würfel, R. Munser, G. Müller-Vogt, “Kinetics of fixation of phase holograms in LiNbO3,” Phys. Status Solidi A 53, 171–180 (1979).
[CrossRef]

P. Hertel, K. H. Ringhofer, R. Sommerfeldt, “Theory of thermal hologram fixing and application to LiNbO3:Cu,” Phys. Status Solidi A 104, 855–862 (1987).
[CrossRef]

Radiat. Effects Defects Solids (1)

S. Klauer, M. Wöhlecke, S. Kapphan, “Isotopic effect protonic conductivity in LiNbO3,” Radiat. Effects Defects Solids 119, 699–704 (1991).
[CrossRef]

Sci. Am. (1)

D. Psaltis, F. H. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265(5173), 749–752 (1994).
[CrossRef]

Solid State Commun. (1)

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Other (4)

X. An, D. Psaltis, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” paper presented at the Optical Society of America Annual Meeting, Rochester, New York, 10–24 October 1996, paper MAAA5.

S. Orlov, “Holographic storage dynamics, phase conjugation, and nonlinear optics in photorefractive materials,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1996).

G. Burr, X. An, D. Psaltis, F. Mok, “Large-scale rapid access holographic memory,” in Optical Data Storage ’95, G. R. Knight, H. Ooki, S. Tyan, eds., Proc. SPIE2514, 363–371 (1995).
[CrossRef]

The authors, along with F. H. Mok, are preparing the following paper for publication: “Large-scale random-access holographic memory using LiNbO3:Fe.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for thermal fixing. SLM, spatial light modulator; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

SNR degradation with thermal fixing.

Fig. 3
Fig. 3

Means and variances of the on and the off signals as functions of the number of holograms.

Fig. 4
Fig. 4

M/# as a function of the absorption coefficient of the material: curve (a) represents thermal-fixing efficiency, curve (b) the M/# of the original system, and curve (c) the M/# of the thermally fixed system.

Fig. 5
Fig. 5

Holographic recording and erasure under different conditions.

Fig. 6
Fig. 6

Example of the incremental fixing schedule.

Fig. 7
Fig. 7

System fixing efficiency as a function of the number of heating treatments.

Fig. 8
Fig. 8

Sample reconstructions from the 10,000 fixed holograms by use of the incremental fixing schedule.

Fig. 9
Fig. 9

Characteristics of the sample reconstructions from the 10,000 fixed holograms. Est. Pe., estimated probability of the error.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

SNR=μ1-μ0σ12+σ021/2,
ηfixing=EfixedEoriginal2=ND-NAND E0ph2+ED2ND-NAND E0ph2+ED+Eq2,
ht=h0 exp-t/τe,
ht=1-ηfixingh0+ηfixing h0 exp-t/τe,
h01-exp-tm/τeexp-tm+1/τe=h01-exp-tm+1/τe,
tm=τeR1+m-1,
1-ηfixingh0n+ηmixing h0n exp-i=1Mh tin+1/τe=h0n+1, h0n=h1-exp-tMhn/τe, h0n+1=h1-exp-tMhn+1/τe,
t1n=τeR1+ηfixingn-1Mh,
τeR1+n-1Mh.

Metrics