Abstract

A new, to our knowledge, method for recording rainbow holograms of three-dimensional diffused objects in one step without the use of slits is proposed. No lens is needed for recording in this kind of holography; instead, multiple synthetic slits are created by displacement and multiple exposure of an object to expand the horizontal and the vertical viewing angles of the hologram.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Grover, H. M. van Driel, “Rainbow holography using full object beam aperture,” J. Opt. Soc. Am. 70, 335–338 (1980).
    [CrossRef]
  2. Q. Shan, Q. Chen, H. Chen, “One-step rainbow holography of diffuse three-dimensional objects with no slit,” Appl. Opt. 22, 3902–3905 (1983).
    [CrossRef]
  3. A. Beauregard, R. A. Lessard, “Rainbow holography of three-dimensional stationary objects with no slit,” Appl. Opt. 23, 3095–3098 (1984).
    [CrossRef]
  4. C. Guan, Z. Wang, “Rainbow holography using a large aperture lens for a full object beam,” Appl. Opt. 31, 205–207 (1992).
    [CrossRef] [PubMed]
  5. C. Guan, Z. Wang, “One-step rainbow holography using a dual lens with no slit,” Appl. Opt. 32, 7145–7147 (1993).
    [CrossRef] [PubMed]
  6. S. A. Benton, “Hologram reconstructions with extended incoherent sources,” J. Opt. Soc. Am. 59, 1545A (1969).

1993 (1)

1992 (1)

1984 (1)

1983 (1)

1980 (1)

1969 (1)

S. A. Benton, “Hologram reconstructions with extended incoherent sources,” J. Opt. Soc. Am. 59, 1545A (1969).

Beauregard, A.

Benton, S. A.

S. A. Benton, “Hologram reconstructions with extended incoherent sources,” J. Opt. Soc. Am. 59, 1545A (1969).

Chen, H.

Chen, Q.

Grover, C. P.

Guan, C.

Lessard, R. A.

Shan, Q.

van Driel, H. M.

Wang, Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Basic recording configuration.

Fig. 2
Fig. 2

Reconstruction configuration.

Fig. 3
Fig. 3

Reconstructed images of the same object photographed at different angles.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Unx0, y0, z0=Ux0, y0-n-1d, z0.
Uhnx, y; z0=expjkz0jλz0- Unx0, y0, z0×expjπλz0x-x02+y-y02dx0dy0,
Urx, y=expjπλzrx2+y-yr2.
tx, y=n=1N Ur*Uhn.
Ucx, y=expjπλzcx2+y-yc2,
Ux, y; z0=a expjπ1λzc-1λzrx2+y2×n=1N Uhnx, y; z0,
a=expjπyc2λzc-yr2λzr
yrλzr=ycλzc.
Uxs, ys; z0=A expjkz0jλz0-expjπ1λzc-1λzrx2+y2-n=1N Ux0, y0-n-1d, z0expjπλz0x-x02+y-y02dx0dy0 exp-jπλzsxs-x2+ys-y2dxdy,
A=a exp-jkzs-jλzs,  k=2πλ.
Uxs, ys; z0=A expjkz0×exp-jπλzs1+λz0λzsxs2+ys2×LysFUx0, y0, z0ξ=-xsλzs,η=-ysλzs,
Lys=expj2πNdysλzs-1expj2πdysλzs-1, 1/zs=1/zc-λ/λzr.
Uxs, ys=ALys  expjkz0exp-jπλzs1+λz0λzs×xs2+ys2FUx0, y0, z0dz0.
Iys=LysL*ys=sin2πNdysλzssin2πdysλzs.
Δy=λzsd.
W=2λzsNd.

Metrics