Abstract

The fabrication of near-micrometer-sized close-packed coherent microlens arrays on spheric or aspheric surfaces has been accomplished by use of a compact holographic projector system that was developed for producing multimicrometer down to submicrometer grid patterning on curved surfaces. The microlens arrays, which can be utilized as moth-eye relief structures, are formed in a photoimageable bisbenzocyclobutene polymeric resin by a photolytic process involving standing-wave interference patterns from the holographic projector system. Because of absorption, each integral microlenslet of the finished arrays possesses a near-paraboloid contour. The trajectories of the meridional rays from each microlenslet can be optimized to intersect at either a single point or a locus of points.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World 4(7) 27–32 (1991).
  2. R. L. de Montebello, “Wide-angle integral photography—the integram system,” in Three-Dimensional Imaging, S. A. Benton, ed., Proc. SPIE120, 73–91 (1977).
    [CrossRef]
  3. N. Davies, M. McCormick, H. W. Lau, “Microlens arrays in integral photography and optical metrology,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 189–198 (1991).
  4. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58, 71–76 (1968).
    [CrossRef]
  5. R. H. Anderson, “Close-up imaging of documents and displays with lens arrays,” Appl. Opt. 18, 477–484 (1979).
    [CrossRef] [PubMed]
  6. R. H. Bellman, N. F. Borrelli, L. G. Mann, J. M. Quintal, “Fabrication and performance of a one-to-one erect imaging microlens array for fax,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 209–217 (1991).
  7. M. W. Farn, “Microconcentrators for focal plane arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 106–117 (1992).
  8. B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Cent. Newsletter 5, 15 (1971).
  9. D. Kwo, G. Damas, W. Zmek, “A Hartmann–Shack wavefront sensor using a binary optic lenslet array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 66–76 (1991).
  10. J. S. Toeppen, W. S. Bliss, T. W. Long, J. T. Salmon, “A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 218–225 (1991).
  11. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
    [CrossRef]
  12. K. Nishizawa, M. Oikawa, “Micro-optics research activities in Japan,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 54–65 (1992).
  13. J. R. Leger, M. L. Scott, W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
    [CrossRef]
  14. J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
    [CrossRef]
  15. W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
    [CrossRef]
  16. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).
  17. P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ principle,” Nature 244, 281–282 (1973).
    [CrossRef]
  18. B. S. Thornton, “Limit of moth’s eye principle and other impedance-matching corrugations for solar-absorber design,” J. Opt. Soc. Am. 65, 267–270 (1975).
    [CrossRef]
  19. S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
    [CrossRef]
  20. W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A 8, 549–553 (1991).
    [CrossRef]
  21. D. H. Raguin, G. M. Morris, “Antireflection-structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [CrossRef] [PubMed]
  22. J. F. DeNatale, P. J. Hood, J. F. Flintoff, A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71, 1388–1393 (1992).
    [CrossRef]
  23. A. B. Harker, J. F. DeNatale, “Diamond gradient index ‘moth-eye’ antireflection surfaces for LWIR windows,” in Window and Dome Technologies and Materials III, P. Klocek, ed., Proc. SPIE1760, 261–267 (1992).
    [CrossRef]
  24. A. B. Harker, J. F. DeNatale, P. J. Hood, J. F. Flintoff, “Method of fabricating of diamond moth-eye surface,” U.S. patent5,334,342 (2August1994).
  25. E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.
  26. J. P. Spallas, A. M. Hawryluk, D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
    [CrossRef]
  27. X. Chen, S. H. Zaidi, S. R. J. Brueck, D. J. Devine, “Interferometric lithography of submicrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
    [CrossRef]
  28. J. J. Cowan, “The recording and large scale replication of crossed holographic grating arrays using multiple beam interferometry,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moiré Phenomena II, J. M. Lerner, ed., Proc. SPIE503, 120–129 (1984).
    [CrossRef]
  29. J. J. Cowan, “The holographic honeycomb microlens,” in Applications of Holography, L. Huff, ed., Proc. SPIE523, 251–259 (1985).
    [CrossRef]
  30. J. J. Cowan, “Method and apparatus for exposing photosensitive material,” U.S. patent4,496,216 (29January1985).
  31. W. Jiang, D. L. Shealy, K. M. Baker, “Development and testing of a holographic projection system,” Appl. Opt. 35, 5994–5998 (1996).
    [CrossRef] [PubMed]
  32. K. M. Baker, “Highly corrected submicrometer grid patterning on curved surfaces,” Appl. Opt. 38, 339–351 (1999).
    [CrossRef]
  33. Processing Guide for Photo-Imageable BCB (The Dow Chemical Company, 2030 Dow Center, Midland, Mich., 48674, 1995).
  34. C. F. Kane, R. R. Krchnavek, “Photodefinable benzocyclobutene as an optical waveguide material,” in Optical Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. SPIE2153, 200–207 (1994).
    [CrossRef]
  35. K. Mersereau, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Fabrication and measurement of fused silica microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 229–233 (1992).
  36. Gentec, Inc., Electro-Optics Division, 2625 Dalton Street, Sainte-Foy, Quebec G1P 3S9, Canada.
  37. J. J. Cowan, A. M. Gerber, W. D. Slafer, “Method for producing a surface relief pattern,” U.S. patent4,402,571 (6September1983).

1999 (1)

1996 (2)

X. Chen, S. H. Zaidi, S. R. J. Brueck, D. J. Devine, “Interferometric lithography of submicrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
[CrossRef]

W. Jiang, D. L. Shealy, K. M. Baker, “Development and testing of a holographic projection system,” Appl. Opt. 35, 5994–5998 (1996).
[CrossRef] [PubMed]

1995 (1)

J. P. Spallas, A. M. Hawryluk, D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

1993 (1)

1992 (3)

J. F. DeNatale, P. J. Hood, J. F. Flintoff, A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71, 1388–1393 (1992).
[CrossRef]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

1991 (2)

1990 (1)

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

1988 (1)

J. R. Leger, M. L. Scott, W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[CrossRef]

1982 (1)

S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

1979 (1)

1975 (1)

1973 (1)

P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

1971 (1)

B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Cent. Newsletter 5, 15 (1971).

1968 (1)

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

Abe, N.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Anderson, R. H.

Baker, K. M.

Bellman, R. H.

R. H. Bellman, N. F. Borrelli, L. G. Mann, J. M. Quintal, “Fabrication and performance of a one-to-one erect imaging microlens array for fax,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 209–217 (1991).

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

Bliss, W. S.

J. S. Toeppen, W. S. Bliss, T. W. Long, J. T. Salmon, “A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 218–225 (1991).

Borrelli, N. F.

R. H. Bellman, N. F. Borrelli, L. G. Mann, J. M. Quintal, “Fabrication and performance of a one-to-one erect imaging microlens array for fax,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 209–217 (1991).

Brueck, S. R. J.

X. Chen, S. H. Zaidi, S. R. J. Brueck, D. J. Devine, “Interferometric lithography of submicrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
[CrossRef]

Burckhardt, C. B.

Chen, X.

X. Chen, S. H. Zaidi, S. R. J. Brueck, D. J. Devine, “Interferometric lithography of submicrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
[CrossRef]

Clapham, P. B.

P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Cowan, J. J.

J. J. Cowan, A. M. Gerber, W. D. Slafer, “Method for producing a surface relief pattern,” U.S. patent4,402,571 (6September1983).

J. J. Cowan, “The recording and large scale replication of crossed holographic grating arrays using multiple beam interferometry,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moiré Phenomena II, J. M. Lerner, ed., Proc. SPIE503, 120–129 (1984).
[CrossRef]

J. J. Cowan, “The holographic honeycomb microlens,” in Applications of Holography, L. Huff, ed., Proc. SPIE523, 251–259 (1985).
[CrossRef]

J. J. Cowan, “Method and apparatus for exposing photosensitive material,” U.S. patent4,496,216 (29January1985).

Daly, D.

M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World 4(7) 27–32 (1991).

Damas, G.

D. Kwo, G. Damas, W. Zmek, “A Hartmann–Shack wavefront sensor using a binary optic lenslet array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 66–76 (1991).

Davies, N.

N. Davies, M. McCormick, H. W. Lau, “Microlens arrays in integral photography and optical metrology,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 189–198 (1991).

de Montebello, R. L.

R. L. de Montebello, “Wide-angle integral photography—the integram system,” in Three-Dimensional Imaging, S. A. Benton, ed., Proc. SPIE120, 73–91 (1977).
[CrossRef]

DeNatale, J. F.

J. F. DeNatale, P. J. Hood, J. F. Flintoff, A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71, 1388–1393 (1992).
[CrossRef]

A. B. Harker, J. F. DeNatale, “Diamond gradient index ‘moth-eye’ antireflection surfaces for LWIR windows,” in Window and Dome Technologies and Materials III, P. Klocek, ed., Proc. SPIE1760, 261–267 (1992).
[CrossRef]

A. B. Harker, J. F. DeNatale, P. J. Hood, J. F. Flintoff, “Method of fabricating of diamond moth-eye surface,” U.S. patent5,334,342 (2August1994).

Devine, D. J.

X. Chen, S. H. Zaidi, S. R. J. Brueck, D. J. Devine, “Interferometric lithography of submicrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
[CrossRef]

Farn, M. W.

M. W. Farn, “Microconcentrators for focal plane arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 106–117 (1992).

Feldblum, A. Y.

K. Mersereau, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Fabrication and measurement of fused silica microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 229–233 (1992).

Flintoff, J. F.

J. F. DeNatale, P. J. Hood, J. F. Flintoff, A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71, 1388–1393 (1992).
[CrossRef]

A. B. Harker, J. F. DeNatale, P. J. Hood, J. F. Flintoff, “Method of fabricating of diamond moth-eye surface,” U.S. patent5,334,342 (2August1994).

Gerber, A. M.

J. J. Cowan, A. M. Gerber, W. D. Slafer, “Method for producing a surface relief pattern,” U.S. patent4,402,571 (6September1983).

Goltsos, W.

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Goltsos, W. C.

J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

Hara, T.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Harker, A. B.

J. F. DeNatale, P. J. Hood, J. F. Flintoff, A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71, 1388–1393 (1992).
[CrossRef]

A. B. Harker, J. F. DeNatale, “Diamond gradient index ‘moth-eye’ antireflection surfaces for LWIR windows,” in Window and Dome Technologies and Materials III, P. Klocek, ed., Proc. SPIE1760, 261–267 (1992).
[CrossRef]

A. B. Harker, J. F. DeNatale, P. J. Hood, J. F. Flintoff, “Method of fabricating of diamond moth-eye surface,” U.S. patent5,334,342 (2August1994).

Hatanaka, K.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Hawryluk, A. M.

J. P. Spallas, A. M. Hawryluk, D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

Hinton, H. S.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Holz, M.

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Hood, P. J.

J. F. DeNatale, P. J. Hood, J. F. Flintoff, A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71, 1388–1393 (1992).
[CrossRef]

A. B. Harker, J. F. DeNatale, P. J. Hood, J. F. Flintoff, “Method of fabricating of diamond moth-eye surface,” U.S. patent5,334,342 (2August1994).

Hutley, M.

M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World 4(7) 27–32 (1991).

Hutley, M. C.

S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

Jiang, W.

Kane, C. F.

C. F. Kane, R. R. Krchnavek, “Photodefinable benzocyclobutene as an optical waveguide material,” in Optical Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. SPIE2153, 200–207 (1994).
[CrossRef]

Kania, D. R.

J. P. Spallas, A. M. Hawryluk, D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

Krchnavek, R. R.

C. F. Kane, R. R. Krchnavek, “Photodefinable benzocyclobutene as an optical waveguide material,” in Optical Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. SPIE2153, 200–207 (1994).
[CrossRef]

Kwo, D.

D. Kwo, G. Damas, W. Zmek, “A Hartmann–Shack wavefront sensor using a binary optic lenslet array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 66–76 (1991).

Lau, H. W.

N. Davies, M. McCormick, H. W. Lau, “Microlens arrays in integral photography and optical metrology,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 189–198 (1991).

Leger, J. R.

J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

J. R. Leger, M. L. Scott, W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[CrossRef]

Long, T. W.

J. S. Toeppen, W. S. Bliss, T. W. Long, J. T. Salmon, “A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 218–225 (1991).

Mann, L. G.

R. H. Bellman, N. F. Borrelli, L. G. Mann, J. M. Quintal, “Fabrication and performance of a one-to-one erect imaging microlens array for fax,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 209–217 (1991).

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

McCormick, M.

N. Davies, M. McCormick, H. W. Lau, “Microlens arrays in integral photography and optical metrology,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 189–198 (1991).

Mersereau, K.

K. Mersereau, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Fabrication and measurement of fused silica microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 229–233 (1992).

Morris, G. M.

Nakagiri, T.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Nijander, C. R.

K. Mersereau, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Fabrication and measurement of fused silica microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 229–233 (1992).

Nishizawa, K.

K. Nishizawa, M. Oikawa, “Micro-optics research activities in Japan,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 54–65 (1992).

Nomura, I.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Oikawa, M.

K. Nishizawa, M. Oikawa, “Micro-optics research activities in Japan,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 54–65 (1992).

Ono, T.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Osada, Y.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Platt, B.

B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Cent. Newsletter 5, 15 (1971).

Quintal, J. M.

R. H. Bellman, N. F. Borrelli, L. G. Mann, J. M. Quintal, “Fabrication and performance of a one-to-one erect imaging microlens array for fax,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 209–217 (1991).

Raguin, D. H.

Sakai, K.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Salmon, J. T.

J. S. Toeppen, W. S. Bliss, T. W. Long, J. T. Salmon, “A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 218–225 (1991).

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Scott, M. L.

J. R. Leger, M. L. Scott, W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[CrossRef]

Shack, R. V.

B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Cent. Newsletter 5, 15 (1971).

Shealy, D. L.

Slafer, W. D.

J. J. Cowan, A. M. Gerber, W. D. Slafer, “Method for producing a surface relief pattern,” U.S. patent4,402,571 (6September1983).

Southwell, W. H.

Spallas, J. P.

J. P. Spallas, A. M. Hawryluk, D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

Stevens, R.

M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World 4(7) 27–32 (1991).

Thornton, B. S.

Toeppen, J. S.

J. S. Toeppen, W. S. Bliss, T. W. Long, J. T. Salmon, “A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 218–225 (1991).

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Townsend, W. P.

K. Mersereau, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Fabrication and measurement of fused silica microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 229–233 (1992).

Veldkamp, W. B.

J. R. Leger, M. L. Scott, W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[CrossRef]

Wilson, S. J.

S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Yamaguchi, E.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Yamamoto, H.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Yamanobe, M.

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Zaidi, S. H.

X. Chen, S. H. Zaidi, S. R. J. Brueck, D. J. Devine, “Interferometric lithography of submicrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
[CrossRef]

Zmek, W.

D. Kwo, G. Damas, W. Zmek, “A Hartmann–Shack wavefront sensor using a binary optic lenslet array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 66–76 (1991).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. R. Leger, M. L. Scott, W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771–1773 (1988).
[CrossRef]

Endeavor (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavor 26, 79–84 (1967).

IEEE J. Quantum Electron. (1)

J. R. Leger, W. C. Goltsos, “Geometric transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers,” IEEE J. Quantum Electron. 28, 1088–1100 (1992).
[CrossRef]

J. Appl. Phys. (1)

J. F. DeNatale, P. J. Hood, J. F. Flintoff, A. B. Harker, “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. Appl. Phys. 71, 1388–1393 (1992).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (2)

J. P. Spallas, A. M. Hawryluk, D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

X. Chen, S. H. Zaidi, S. R. J. Brueck, D. J. Devine, “Interferometric lithography of submicrometer sparse hole arrays for field-emission display applications,” J. Vac. Sci. Technol. B 14, 3339–3349 (1996).
[CrossRef]

Nature (1)

P. B. Clapham, M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ principle,” Nature 244, 281–282 (1973).
[CrossRef]

Opt. Acta (1)

S. J. Wilson, M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta 29, 993–1009 (1982).
[CrossRef]

Opt. Eng. (1)

W. Goltsos, M. Holz, “Agile beam steering using binary optics microlens arrays,” Opt. Eng. 29, 1392–1397 (1990).
[CrossRef]

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Opt. Sci. Cent. Newsletter (1)

B. Platt, R. V. Shack, “Lenticular Hartmann screen,” Opt. Sci. Cent. Newsletter 5, 15 (1971).

Phys. World (1)

M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World 4(7) 27–32 (1991).

Other (18)

R. L. de Montebello, “Wide-angle integral photography—the integram system,” in Three-Dimensional Imaging, S. A. Benton, ed., Proc. SPIE120, 73–91 (1977).
[CrossRef]

N. Davies, M. McCormick, H. W. Lau, “Microlens arrays in integral photography and optical metrology,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 189–198 (1991).

R. H. Bellman, N. F. Borrelli, L. G. Mann, J. M. Quintal, “Fabrication and performance of a one-to-one erect imaging microlens array for fax,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 209–217 (1991).

M. W. Farn, “Microconcentrators for focal plane arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 106–117 (1992).

D. Kwo, G. Damas, W. Zmek, “A Hartmann–Shack wavefront sensor using a binary optic lenslet array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 66–76 (1991).

J. S. Toeppen, W. S. Bliss, T. W. Long, J. T. Salmon, “A video Hartmann wavefront diagnostic that incorporates a monolithic microlens array,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 218–225 (1991).

K. Nishizawa, M. Oikawa, “Micro-optics research activities in Japan,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 54–65 (1992).

J. J. Cowan, “The recording and large scale replication of crossed holographic grating arrays using multiple beam interferometry,” in Application, Theory, and Fabrication of Periodic Structures, Diffraction Gratings, and Moiré Phenomena II, J. M. Lerner, ed., Proc. SPIE503, 120–129 (1984).
[CrossRef]

J. J. Cowan, “The holographic honeycomb microlens,” in Applications of Holography, L. Huff, ed., Proc. SPIE523, 251–259 (1985).
[CrossRef]

J. J. Cowan, “Method and apparatus for exposing photosensitive material,” U.S. patent4,496,216 (29January1985).

A. B. Harker, J. F. DeNatale, “Diamond gradient index ‘moth-eye’ antireflection surfaces for LWIR windows,” in Window and Dome Technologies and Materials III, P. Klocek, ed., Proc. SPIE1760, 261–267 (1992).
[CrossRef]

A. B. Harker, J. F. DeNatale, P. J. Hood, J. F. Flintoff, “Method of fabricating of diamond moth-eye surface,” U.S. patent5,334,342 (2August1994).

E. Yamaguchi, K. Sakai, I. Nomura, T. Ono, M. Yamanobe, N. Abe, T. Hara, K. Hatanaka, Y. Osada, H. Yamamoto, T. Nakagiri, “A 10-in. surface-conduction electron-emitter display,” in Digest of Technical Papers, J. Morreale, ed. (Society for Information Display, San Jose, Calif., 1997), Vol. XXVIII, pp. 52–55.

Processing Guide for Photo-Imageable BCB (The Dow Chemical Company, 2030 Dow Center, Midland, Mich., 48674, 1995).

C. F. Kane, R. R. Krchnavek, “Photodefinable benzocyclobutene as an optical waveguide material,” in Optical Interconnects II, R. T. Chen, J. A. Neff, eds., Proc. SPIE2153, 200–207 (1994).
[CrossRef]

K. Mersereau, C. R. Nijander, A. Y. Feldblum, W. P. Townsend, “Fabrication and measurement of fused silica microlens arrays,” in Miniature and Micro-Optics: Fabrication and System Applications II, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 229–233 (1992).

Gentec, Inc., Electro-Optics Division, 2625 Dalton Street, Sainte-Foy, Quebec G1P 3S9, Canada.

J. J. Cowan, A. M. Gerber, W. D. Slafer, “Method for producing a surface relief pattern,” U.S. patent4,402,571 (6September1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Three-beam curved microlens array and (b) four-beam curved microlens array.

Fig. 2
Fig. 2

(a) Three-beam integral microlenslet and (b) four-beam integral microlenslet.

Fig. 3
Fig. 3

SEM photomicrographs of (a) a three-beam microlens array and (b) a four-beam microlens array.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

h=0.4λ2.
Λ<λ1/n.
Λ<λ1/2n.
IMAX=|E1+E2+E3|2,
En=An exp ikn+rn-ωtjˆ,
IMAX=|E1+E2+E3+E4|2.

Metrics