Abstract

We propose a poly(methyl methacrylate) fiber-image-guide-based embedded optical circuit board for future optoelectronic array-interconnection applications. An experimental prototypical board that embeds perfect-shuffle and banyan interconnect patterns of 16 × 16 parallel links, each of which offers a fiber pixel density of >1000 pixels/mm2, are demonstrated experimentally.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Farenc, P. Destruel, “Illumination, signalisation, and decoration using plastic optical fibers,” in Proceedings of the Fourth International Conference on Plastic Optical Fibers and Applications (IGI Publications, Boston, Mass., 1995), pp. 203–205.
  2. Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
    [CrossRef]
  3. C. Lund, “Optics inside future computers,” in Proceedings of MPPOI’97, J. W. Goodman, ed. (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 156–159.
  4. T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gbit/s 100 m data transmission using graded-index polymer optical fiber and high-speed laser diode at 650 nm wavelength,” Electron. Lett. 31, 467–469 (1995).
    [CrossRef]
  5. J. Cirillo, R. E. Steele, “High speed plastic networks (HSPN) program overview,” in Proceedings of the Fourth International Conference on Plastic Optical Fibers and Applications, (IGI Publications, Boston, Mass., 1995), pp. 16–21.
  6. Y. Li, T. Wang, “Distribution of light and optical signals using embedded mirrors inside polymer optical fibers,” IEEE Photon Technol. Lett. 8, 1352–1354 (1996).
    [CrossRef]
  7. Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon Technol. Lett. 8, 1650–1652 (1996).
    [CrossRef]
  8. Y. Li, K. Fasanella, T. Wang, “Low-cost planar star-coupling structure for large-core polymer optical fibers,” Appl. Opt. 37, 884–888 (1998).
    [CrossRef]
  9. Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” Appl. Opt. 37, 254–263 (1998).
    [CrossRef]
  10. Y. Li, T. Wang, J.-K. Rhee, L. J. Wang, “Multi-Gb/s board-level clock distribution schemes using laminated end-tapered fiber bundles,” IEEE Photon Technol. Lett. 10, 884–886 (1998).
    [CrossRef]
  11. Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
    [CrossRef] [PubMed]
  12. M. Mogi, K. Yoshimura, “Development of super high density packed image guide,” in Materials, Devices, Techniques, and Applications for Z-Plane Focal Plane Array (FPA) Technology, J. C. Carson, ed., Proc. SPIE1067, 172–180 (1989).
  13. H. F. Ghaemi, Y. Li, T. Thio, T. Wang, “Fiber image guide with subwavelength resolution,” Appl. Phys. Lett. 72, 1137–1139 (1998).
    [CrossRef]
  14. K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Select. Areas Commun. 12, 762–772 (1994).
    [CrossRef]
  15. K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
    [CrossRef]
  16. Y. Li, T. Wang, S. Kawai, “Distributed crossbar interconnects with vertical-cavity surface-emitting laser–angle-multiplexing and fiber image guides,” Appl. Opt. 37, 254–262 (1998).
    [CrossRef]
  17. R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Janson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
    [CrossRef]
  18. L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, J. T. Yardley, “Low-loss high-thermal-stability polymer interconnects for low-cost high-performance massively parallel processing,” in Proceedings of MPPOI’96 (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 192–205.
  19. K. Hwang, F. A. Briggs, “Structures and algorithms for array processors,” in Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984), Chap. 5, pp. 325–392.

1998 (5)

Y. Li, K. Fasanella, T. Wang, “Low-cost planar star-coupling structure for large-core polymer optical fibers,” Appl. Opt. 37, 884–888 (1998).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” Appl. Opt. 37, 254–263 (1998).
[CrossRef]

Y. Li, T. Wang, J.-K. Rhee, L. J. Wang, “Multi-Gb/s board-level clock distribution schemes using laminated end-tapered fiber bundles,” IEEE Photon Technol. Lett. 10, 884–886 (1998).
[CrossRef]

H. F. Ghaemi, Y. Li, T. Thio, T. Wang, “Fiber image guide with subwavelength resolution,” Appl. Phys. Lett. 72, 1137–1139 (1998).
[CrossRef]

Y. Li, T. Wang, S. Kawai, “Distributed crossbar interconnects with vertical-cavity surface-emitting laser–angle-multiplexing and fiber image guides,” Appl. Opt. 37, 254–262 (1998).
[CrossRef]

1997 (1)

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

1996 (3)

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, “Distribution of light and optical signals using embedded mirrors inside polymer optical fibers,” IEEE Photon Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

1995 (2)

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gbit/s 100 m data transmission using graded-index polymer optical fiber and high-speed laser diode at 650 nm wavelength,” Electron. Lett. 31, 467–469 (1995).
[CrossRef]

1994 (1)

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Select. Areas Commun. 12, 762–772 (1994).
[CrossRef]

1992 (1)

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Janson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
[CrossRef]

Briggs, F. A.

K. Hwang, F. A. Briggs, “Structures and algorithms for array processors,” in Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984), Chap. 5, pp. 325–392.

Chen, R. T.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Janson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
[CrossRef]

Cirillo, J.

J. Cirillo, R. E. Steele, “High speed plastic networks (HSPN) program overview,” in Proceedings of the Fourth International Conference on Plastic Optical Fibers and Applications, (IGI Publications, Boston, Mass., 1995), pp. 16–21.

Destruel, P.

J. Farenc, P. Destruel, “Illumination, signalisation, and decoration using plastic optical fibers,” in Proceedings of the Fourth International Conference on Plastic Optical Fibers and Applications (IGI Publications, Boston, Mass., 1995), pp. 203–205.

Eldada, L.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, J. T. Yardley, “Low-loss high-thermal-stability polymer interconnects for low-cost high-performance massively parallel processing,” in Proceedings of MPPOI’96 (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 192–205.

Farenc, J.

J. Farenc, P. Destruel, “Illumination, signalisation, and decoration using plastic optical fibers,” in Proceedings of the Fourth International Conference on Plastic Optical Fibers and Applications (IGI Publications, Boston, Mass., 1995), pp. 203–205.

Fasanella, K.

Y. Li, K. Fasanella, T. Wang, “Low-cost planar star-coupling structure for large-core polymer optical fibers,” Appl. Opt. 37, 884–888 (1998).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” Appl. Opt. 37, 254–263 (1998).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, Y. Li, T. Thio, T. Wang, “Fiber image guide with subwavelength resolution,” Appl. Phys. Lett. 72, 1137–1139 (1998).
[CrossRef]

Hwang, K.

K. Hwang, F. A. Briggs, “Structures and algorithms for array processors,” in Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984), Chap. 5, pp. 325–392.

Igasaki, Y.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

Ishigure, T.

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gbit/s 100 m data transmission using graded-index polymer optical fiber and high-speed laser diode at 650 nm wavelength,” Electron. Lett. 31, 467–469 (1995).
[CrossRef]

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

Janson, T.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Janson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
[CrossRef]

Kaneda, K.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

Kasahara, K.

Kawai, S.

Kitayama, K.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Select. Areas Commun. 12, 762–772 (1994).
[CrossRef]

Kobayashi, K.

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gbit/s 100 m data transmission using graded-index polymer optical fiber and high-speed laser diode at 650 nm wavelength,” Electron. Lett. 31, 467–469 (1995).
[CrossRef]

Koike, Y.

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gbit/s 100 m data transmission using graded-index polymer optical fiber and high-speed laser diode at 650 nm wavelength,” Electron. Lett. 31, 467–469 (1995).
[CrossRef]

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

Kosaka, H.

Li, Y.

Y. Li, K. Fasanella, T. Wang, “Low-cost planar star-coupling structure for large-core polymer optical fibers,” Appl. Opt. 37, 884–888 (1998).
[CrossRef]

Y. Li, T. Wang, J.-K. Rhee, L. J. Wang, “Multi-Gb/s board-level clock distribution schemes using laminated end-tapered fiber bundles,” IEEE Photon Technol. Lett. 10, 884–886 (1998).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” Appl. Opt. 37, 254–263 (1998).
[CrossRef]

Y. Li, T. Wang, S. Kawai, “Distributed crossbar interconnects with vertical-cavity surface-emitting laser–angle-multiplexing and fiber image guides,” Appl. Opt. 37, 254–262 (1998).
[CrossRef]

H. F. Ghaemi, Y. Li, T. Thio, T. Wang, “Fiber image guide with subwavelength resolution,” Appl. Phys. Lett. 72, 1137–1139 (1998).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, “Distribution of light and optical signals using embedded mirrors inside polymer optical fibers,” IEEE Photon Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

Lu, H.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Janson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
[CrossRef]

Lund, C.

C. Lund, “Optics inside future computers,” in Proceedings of MPPOI’97, J. W. Goodman, ed. (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 156–159.

Mogi, M.

M. Mogi, K. Yoshimura, “Development of super high density packed image guide,” in Materials, Devices, Techniques, and Applications for Z-Plane Focal Plane Array (FPA) Technology, J. C. Carson, ed., Proc. SPIE1067, 172–180 (1989).

Nakamura, M.

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

Nihei, E.

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gbit/s 100 m data transmission using graded-index polymer optical fiber and high-speed laser diode at 650 nm wavelength,” Electron. Lett. 31, 467–469 (1995).
[CrossRef]

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

Norwood, R. A.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, J. T. Yardley, “Low-loss high-thermal-stability polymer interconnects for low-cost high-performance massively parallel processing,” in Proceedings of MPPOI’96 (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 192–205.

Rhee, J.-K.

Y. Li, T. Wang, J.-K. Rhee, L. J. Wang, “Multi-Gb/s board-level clock distribution schemes using laminated end-tapered fiber bundles,” IEEE Photon Technol. Lett. 10, 884–886 (1998).
[CrossRef]

Robinson, D.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Janson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
[CrossRef]

Savant, G.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Janson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
[CrossRef]

Shacklette, L. W.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, J. T. Yardley, “Low-loss high-thermal-stability polymer interconnects for low-cost high-performance massively parallel processing,” in Proceedings of MPPOI’96 (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 192–205.

Steele, R. E.

J. Cirillo, R. E. Steele, “High speed plastic networks (HSPN) program overview,” in Proceedings of the Fourth International Conference on Plastic Optical Fibers and Applications, (IGI Publications, Boston, Mass., 1995), pp. 16–21.

Stengel, K. M. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, J. T. Yardley, “Low-loss high-thermal-stability polymer interconnects for low-cost high-performance massively parallel processing,” in Proceedings of MPPOI’96 (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 192–205.

Thio, T.

H. F. Ghaemi, Y. Li, T. Thio, T. Wang, “Fiber image guide with subwavelength resolution,” Appl. Phys. Lett. 72, 1137–1139 (1998).
[CrossRef]

Wang, L. J.

Y. Li, T. Wang, J.-K. Rhee, L. J. Wang, “Multi-Gb/s board-level clock distribution schemes using laminated end-tapered fiber bundles,” IEEE Photon Technol. Lett. 10, 884–886 (1998).
[CrossRef]

Wang, M.

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Janson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
[CrossRef]

Wang, T.

H. F. Ghaemi, Y. Li, T. Thio, T. Wang, “Fiber image guide with subwavelength resolution,” Appl. Phys. Lett. 72, 1137–1139 (1998).
[CrossRef]

Y. Li, T. Wang, S. Kawai, “Distributed crossbar interconnects with vertical-cavity surface-emitting laser–angle-multiplexing and fiber image guides,” Appl. Opt. 37, 254–262 (1998).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” Appl. Opt. 37, 254–263 (1998).
[CrossRef]

Y. Li, T. Wang, J.-K. Rhee, L. J. Wang, “Multi-Gb/s board-level clock distribution schemes using laminated end-tapered fiber bundles,” IEEE Photon Technol. Lett. 10, 884–886 (1998).
[CrossRef]

Y. Li, K. Fasanella, T. Wang, “Low-cost planar star-coupling structure for large-core polymer optical fibers,” Appl. Opt. 37, 884–888 (1998).
[CrossRef]

Y. Li, T. Wang, H. Kosaka, S. Kawai, K. Kasahara, “Fiber-image-guide-based bit-parallel optical interconnects,” Appl. Opt. 35, 6920–6933 (1996).
[CrossRef] [PubMed]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

Y. Li, T. Wang, “Distribution of light and optical signals using embedded mirrors inside polymer optical fibers,” IEEE Photon Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Xu, C.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, J. T. Yardley, “Low-loss high-thermal-stability polymer interconnects for low-cost high-performance massively parallel processing,” in Proceedings of MPPOI’96 (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 192–205.

Yamazaki, S.

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gbit/s 100 m data transmission using graded-index polymer optical fiber and high-speed laser diode at 650 nm wavelength,” Electron. Lett. 31, 467–469 (1995).
[CrossRef]

Yardley, J. T.

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, J. T. Yardley, “Low-loss high-thermal-stability polymer interconnects for low-cost high-performance massively parallel processing,” in Proceedings of MPPOI’96 (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 192–205.

Yoshimura, K.

M. Mogi, K. Yoshimura, “Development of super high density packed image guide,” in Materials, Devices, Techniques, and Applications for Z-Plane Focal Plane Array (FPA) Technology, J. C. Carson, ed., Proc. SPIE1067, 172–180 (1989).

Appl. Opt. (2)

Y. Li, K. Fasanella, T. Wang, “Low-cost planar star-coupling structure for large-core polymer optical fibers,” Appl. Opt. 37, 884–888 (1998).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “Cost-effective side-coupling polymer fiber optics for optical interconnections,” Appl. Opt. 37, 254–263 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. F. Ghaemi, Y. Li, T. Thio, T. Wang, “Fiber image guide with subwavelength resolution,” Appl. Phys. Lett. 72, 1137–1139 (1998).
[CrossRef]

Electron. Lett. (1)

T. Ishigure, E. Nihei, S. Yamazaki, K. Kobayashi, Y. Koike, “2.5 Gbit/s 100 m data transmission using graded-index polymer optical fiber and high-speed laser diode at 650 nm wavelength,” Electron. Lett. 31, 467–469 (1995).
[CrossRef]

IEEE J. Select. Areas Commun. (1)

K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA networks for image transmission,” IEEE J. Select. Areas Commun. 12, 762–772 (1994).
[CrossRef]

IEEE Photon Technol. Lett. (3)

Y. Li, T. Wang, J.-K. Rhee, L. J. Wang, “Multi-Gb/s board-level clock distribution schemes using laminated end-tapered fiber bundles,” IEEE Photon Technol. Lett. 10, 884–886 (1998).
[CrossRef]

Y. Li, T. Wang, “Distribution of light and optical signals using embedded mirrors inside polymer optical fibers,” IEEE Photon Technol. Lett. 8, 1352–1354 (1996).
[CrossRef]

Y. Li, T. Wang, K. Fasanella, “4 × 16 polymer optical fiber array couplers,” IEEE Photon Technol. Lett. 8, 1650–1652 (1996).
[CrossRef]

J. Lightwave Technol. (3)

Y. Koike, T. Ishigure, E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightwave Technol. 13, 1475–1489 (1995).
[CrossRef]

K. Kitayama, M. Nakamura, Y. Igasaki, K. Kaneda, “Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment,” J. Lightwave Technol. 15, 202–212 (1997).
[CrossRef]

R. T. Chen, H. Lu, D. Robinson, M. Wang, G. Savant, T. Janson, “Guided-wave planar optical interconnects using highly multiplexed polymer waveguide holograms,” J. Lightwave Technol. 10, 888–897 (1992).
[CrossRef]

Other (6)

L. Eldada, C. Xu, K. M. T. Stengel, L. W. Shacklette, R. A. Norwood, J. T. Yardley, “Low-loss high-thermal-stability polymer interconnects for low-cost high-performance massively parallel processing,” in Proceedings of MPPOI’96 (IEEE Computer Society, Los Alamitos, Calif., 1996), pp. 192–205.

K. Hwang, F. A. Briggs, “Structures and algorithms for array processors,” in Computer Architecture and Parallel Processing (McGraw-Hill, New York, 1984), Chap. 5, pp. 325–392.

M. Mogi, K. Yoshimura, “Development of super high density packed image guide,” in Materials, Devices, Techniques, and Applications for Z-Plane Focal Plane Array (FPA) Technology, J. C. Carson, ed., Proc. SPIE1067, 172–180 (1989).

C. Lund, “Optics inside future computers,” in Proceedings of MPPOI’97, J. W. Goodman, ed. (IEEE Computer Society, Los Alamitos, Calif., 1997), pp. 156–159.

J. Cirillo, R. E. Steele, “High speed plastic networks (HSPN) program overview,” in Proceedings of the Fourth International Conference on Plastic Optical Fibers and Applications, (IGI Publications, Boston, Mass., 1995), pp. 16–21.

J. Farenc, P. Destruel, “Illumination, signalisation, and decoration using plastic optical fibers,” in Proceedings of the Fourth International Conference on Plastic Optical Fibers and Applications (IGI Publications, Boston, Mass., 1995), pp. 203–205.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Cross section of a PMMA FIG.

Fig. 2
Fig. 2

Schematic of an optical circuit board formed by the embedding of PFIG’s.

Fig. 3
Fig. 3

(a) Connection diagram of a 16-node shuffle interconnect. (b) Upper half of (a) redrawn, showing the use of PFIG’s with counterbends.

Fig. 4
Fig. 4

(a) First butterfly stage in a 16-node banyan interconnect. (b) Upper half of (a) redrawn, showing PFIG’s with counterbends.

Fig. 5
Fig. 5

Setup for heat-based bending of PFIG’s. The solid and the dashed lines indicate the same PFIG before and after bending, respectively.

Fig. 6
Fig. 6

Photograph of some fabricated PFIG structures that were formed by use of the setup shown in Fig. 5.

Fig. 7
Fig. 7

Plots of the time needed to bend a PFIG to an angle β under different temperatures.

Fig. 8
Fig. 8

Bending response of a PFIG versus the temperature for a target 90° bend.

Fig. 9
Fig. 9

Optical loss measurements for all PFIG channels embedded in the upper protection plate of 16-channel butterfly and shuffle interconnects.

Fig. 10
Fig. 10

Photograph of embedded boards that form a shuffle (the two left-hand columns) and a banyan (the two right-hand columns) stage. The magnified images of the letters are examples for indicating the input and the output relations of the interconnects.

Fig. 11
Fig. 11

(a) Photograph of the output image of group 3 targets of a U.S. Air Force resolution chart through a typical PFIG link and (b) the measured modulation transfer function of the PFIG.

Fig. 12
Fig. 12

(a) Photograph of a PFIG output image of a 6 × 6 VCSEL array and (b) an eye diagram of 1-Gbyte/s transmission that uses a typical channel of the setup shown in (a).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Y = S X = S x n - 1 x n - 2     x 1 x 0 = x n - 2     x 1 x 0 x n - 1 .
L N j = D + jW N - 1 for   j = 0 ,   1 , ,   N / 2 - 1 D + W N - 1 - j N - 1 for   j = N / 2 , ,   N - 1 ,
Δ L MAX = W N - 2 2 N - 1 .
Y i = B i X i = B i x n - 1 x n - 2     x n - i x n - i - 1     x 1 x 0 = x n - 1 x n - 2     x 0 x n - i - 1     x 1 x n - i ,   i = 1 ,   2 ,     ,   n - 1 .
Y 1 = B 1 x 3 x 2 x 1 x 0 = x 0 x 2 x 1 x 3 ,   Y 2 = B 2 x 3 x 2 x 1 x 0 = x 3 x 0 x 1 x 2 ,   Y 3 = B 3 x 3 x 2 x 1 x 0 = x 3 x 2 x 0 x 1 .
L N = D for straight-through paths D + W N - 2 2 N - 1 for deflection paths .
Δ L MAX = W N - 2 2 N - 1 .

Metrics