Abstract

By considering CCD detection as a spatiotemporal sampling process and considering electronically addressed liquid-crystal display’s (LCD’s) and cathode ray tube (CRT) display’s as discrete displays, we investigate the frame-grabbing process for CCD detection of discrete displays by using CRT–CCD and LCD–CCD models. Because of the nature of the timing for pixel addressing in the CRT, line addressing in the LCD, and frame transfer in the CCD, it is found that CCD frames suffer from indented interframe cross talk of the displayed input frames. This indented cross talk occurs regardless of whether a synchronizing signal is utilized. Cross talk typically takes place between two or three input frames. Indented interframe cross talk does not affect CCD detection for frame refreshing. However, cross talk increases as the interframe difference between successive displayed input frames increases.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Owechko, “SLMs in optical computing” in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1995).
  2. M. Young, “Low-cost LCD video display for optical processing,” Appl. Opt. 25, 1024–1026 (1986).
    [CrossRef] [PubMed]
  3. J. Aiken, B. Bates, M. G. Gatney, P. C. Miller, “Programmable liquid-crystal TV spatial light modulator: modified drive electronics to improve device performance for spatial-light-modulation operation,” Appl. Opt. 30, 4605–4609 (1991).
    [CrossRef] [PubMed]
  4. J. C. Feltz, “Discrete display devices and analysis techniques,” in Electro-optical Displays, M. A. Karim, ed. (Marcel Dekker, New York, 1992), Part III, pp. 495–512.
  5. J. A. Castellano, Handbook of Display Technology (Academic, New York, 1992), pp. 29–30.
  6. D. E. Pearson, Transmission and Display of Pictorial Information (Wiley, New York, 1975), Chap. 3, pp. 51–109.
  7. K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
    [CrossRef]
  8. D. A. Gergory, J. A. Loudin, J. C. Kirsch, E. C. Tam, F. T. S. Yu, “Using the hybrid modulating properties of liquid-crystal television,” Appl. Opt. 30, 1374–1378 (1991).
    [CrossRef]
  9. T. Chao, “Real-time optical edge enhancement using a Hughes liquid crystal light valve,” Appl. Opt. 28, 4727–4731 (1989).
    [CrossRef] [PubMed]
  10. K. D. Hughes, S. K. Rogers, J. P. Mills, M. Kabrisky, “Optical preprocessing using liquid crystal television,” Appl. Opt. 26, 1042–1044 (1987).
    [CrossRef] [PubMed]
  11. H. Sakai, J. Ohtsudo, “Image subtraction using polarization modulation of liquid-crystal television,” Appl. Opt. 31, 6852–6858 (1992).
    [CrossRef] [PubMed]
  12. D. A. Gregory, J. C. Kirsch, E. C. Tam, “Full complex modulation using liquid-crystal television,” Appl. Opt. 31, 163–165 (1992).
    [CrossRef] [PubMed]
  13. W. den Boer, F. C. Luo, I. Yaniv, “Microelectronics in active-matrix LCD’s and image sensor,” in Electro-optical Displays, M. A. Karim, ed. (Marcel Dekker, New York, 1992), Part I, pp. 69–120.
  14. G. C. Holst, CCD Arrays, Cameras, and Displays, Vol. PM57 of SPIE Monographs and Handbooks Series (SPIE, Bellingham, Wash., 1996).
  15. D. Amitage, J. I. Thackara, “Photoaddressed liquid-crystal edge-enhanced spatial light modulator,” Appl. Opt. 28, 219–225 (1989).
    [CrossRef]

1992 (2)

1991 (2)

1990 (1)

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

1989 (2)

1987 (1)

1986 (1)

Aiken, J.

Amitage, D.

Bates, B.

Castellano, J. A.

J. A. Castellano, Handbook of Display Technology (Academic, New York, 1992), pp. 29–30.

Chao, T.

den Boer, W.

W. den Boer, F. C. Luo, I. Yaniv, “Microelectronics in active-matrix LCD’s and image sensor,” in Electro-optical Displays, M. A. Karim, ed. (Marcel Dekker, New York, 1992), Part I, pp. 69–120.

Feltz, J. C.

J. C. Feltz, “Discrete display devices and analysis techniques,” in Electro-optical Displays, M. A. Karim, ed. (Marcel Dekker, New York, 1992), Part III, pp. 495–512.

Gatney, M. G.

Gergory, D. A.

Gregory, D. A.

Holst, G. C.

G. C. Holst, CCD Arrays, Cameras, and Displays, Vol. PM57 of SPIE Monographs and Handbooks Series (SPIE, Bellingham, Wash., 1996).

Hughes, K. D.

Kabrisky, M.

Kirsch, J. C.

Loudin, J. A.

Lu, K.

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

Luo, F. C.

W. den Boer, F. C. Luo, I. Yaniv, “Microelectronics in active-matrix LCD’s and image sensor,” in Electro-optical Displays, M. A. Karim, ed. (Marcel Dekker, New York, 1992), Part I, pp. 69–120.

Miller, P. C.

Mills, J. P.

Ohtsudo, J.

Owechko, Y.

Y. Owechko, “SLMs in optical computing” in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1995).

Pearson, D. E.

D. E. Pearson, Transmission and Display of Pictorial Information (Wiley, New York, 1975), Chap. 3, pp. 51–109.

Rogers, S. K.

Sakai, H.

Saleh, B. E. A.

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

Tam, E. C.

Thackara, J. I.

Yaniv, I.

W. den Boer, F. C. Luo, I. Yaniv, “Microelectronics in active-matrix LCD’s and image sensor,” in Electro-optical Displays, M. A. Karim, ed. (Marcel Dekker, New York, 1992), Part I, pp. 69–120.

Young, M.

Yu, F. T. S.

Appl. Opt. (8)

Opt. Eng. (1)

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

Other (6)

Y. Owechko, “SLMs in optical computing” in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1995).

W. den Boer, F. C. Luo, I. Yaniv, “Microelectronics in active-matrix LCD’s and image sensor,” in Electro-optical Displays, M. A. Karim, ed. (Marcel Dekker, New York, 1992), Part I, pp. 69–120.

G. C. Holst, CCD Arrays, Cameras, and Displays, Vol. PM57 of SPIE Monographs and Handbooks Series (SPIE, Bellingham, Wash., 1996).

J. C. Feltz, “Discrete display devices and analysis techniques,” in Electro-optical Displays, M. A. Karim, ed. (Marcel Dekker, New York, 1992), Part III, pp. 495–512.

J. A. Castellano, Handbook of Display Technology (Academic, New York, 1992), pp. 29–30.

D. E. Pearson, Transmission and Display of Pictorial Information (Wiley, New York, 1975), Chap. 3, pp. 51–109.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Discrete frame vector geometry. The indices i and j represent the pixel address, A and B represent the pixel pitches, and a and b represent the pixel size along the x and y directions, respectively.

Fig. 2
Fig. 2

Pixel-timing diagram of a CRT display. T 1 represents the frame time, and T 1/N 1 M 1 represents the time separation between successive CRT frames.

Fig. 3
Fig. 3

Line-timing diagram of a matrix-addressed LCD. T 2 represents the frame time, and T 2/N 2 represents the time separation between successive LCD frames.

Fig. 4
Fig. 4

Two models for CCD detection of a discrete display: (a) CRT–CCD and (b) LCD–CCD.

Fig. 5
Fig. 5

Illustration of indented interframe cross talk in CCD detection of a CRT display. The shaded area is a CCD frame that involves three CRT frames.

Fig. 6
Fig. 6

(a) Exponential pixel-phosphorescence function u(t), (b) photosensitive integration function of a CCD frame, (c) correlation between the functions shown in (a) and (b), (d) graph of Eq. (26) that accounts for the suppression of indented interframe cross talk in CCD detection of a CRT display in the case of frame refreshing.

Fig. 7
Fig. 7

Weight functions when d = 0 for the following CCD frames: (a) the past frame at n - 1, (b) the current frame at n, (c) the future frame at n + 1.

Fig. 8
Fig. 8

Weight functions when d = T 0/2 for the following CCD frames: (a) the past frame at n - 1, (b) the current frame at n, (c) the future frame at n + 1.

Fig. 9
Fig. 9

Example of four successive CRT frames.

Fig. 10
Fig. 10

CCD outputs corresponding to the inputs shown in Fig. 9 in the case of synchronous detection.

Fig. 11
Fig. 11

CCD outputs corresponding to the inputs shown in Fig. 9 in the case of asynchronous detection when d = T 0/2.

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

V=M, N, A, B, a, b, T,
χijkx, y, t=1abrectx-iAa, y-jBbωijt-kT,
 χijkx, y, tχijkx, y, tdxdydt=δiiδjjδkk
fx, y, t=ijk fijkχijkx, y, t,
tij=T1M1N1i+jM1, i=0, 1,, M1, j=0, 1,, N1.
u1t=exp-τ1tt0, T10otherwise.
fCRTx, y, t=ijk fCRT,ijk1a1b1×rectx-iA1a1, y-jB1b1u1t-tij-kT1=ijk fCRT,ijkχCRT,ijkx, y, t,
χCRT,ijkx, y, t=1a1b1rectx-iA1a1, y-jB1b1×u1t-tij-kT1.
si=T2N2 i,
u2t=exp-τ2tt0, T20otherwise,
fLCDx, y, t=ijk fLCD,ijk1a2b2×rectx-iA2a2, y-jB2b2u2t-sij-kT2=ijk fLCD,ijkχLCD,ijkx, y, t,
χLCD,ijkx, y, t=1a2b2rectx-iA2a2, y-jB2b2×u2t-si-kT2,
χCCD,ijkx, y, t=1a0b0T0×rectx-iA0a0, y-jB0b0, t-kT0T0.
lmn fCCD,lmn=lmn  fx, y, t×χCCD,lmnx, y, tdxdydt,
lmn fCCD,lmn=lmnijk  fCRT,ijk×χCRT,ijkx, y, tχCCD,lmnx, y, t×dxdydt,
A1, B1, a1, b1=A0, B0, a1, b1,
 χCRT,ijkx, y, tχCCD,lmnx, y, tdxdy=δilδjm  χCRT,ijkx, y, tχCCD,ijnx, y, tdxdy=δilδjmu1t-tij-kT11a0b0rectt-nT0T0.
lmn fCCD,lmn=lmn  k fCRT,lmku1t-tlm-kT11a0b0rectt-nT0-dT0dt.
lmn fCCD,lmn=lmn  ijk fLCD,ijk×χLCD,ijkx, y, tχCCD,lmnx, y, t×dxdydt.
A2, B2, a2, b2, T2=A0, B0, a0, b0, T0,
 χLCD,ijkx, y, tχCCD,lmnx, y, tdxdy=δilδjmu2t-si-kT01a0b0×rectt-nT0T0.
lmn fCCD,lmn=1a0b0lmn  k fLCD,lmk×u2t-si-kT0×rectt-nT0-dT0dxdydt,
fCCD,lmn=1T0k fCRT,lmk  u1t-tlm-kT0rectt-nT0-dT0dt=k fCRT,lmkC10nT0+d-kT0-tlm,
C10t=ut1T0recttT0=1T0  u1trectt-tT0dt=1T0t-T0/2t+T0/2 u1tdt,
fCCD,lmn=fCRT,lmn-1C10d-tlm+T0+fCRT,lmn×C10d-tlm+fCRT,lmn+1C10d-tlm-T0.
fCRT,lmn+1=fCRT,lmn,  n=0, 1, 2,.
fCCD,lmn=fCRT,lmnC10d-tlm+T0+C10d-tlm+C10d-tlm-T0=fCRT,lmn,
C10d-tlm+T0+C10d-tlm+C10d-tlm-T0=1,
ΔfCRT,lmnfCRT,lmn+1-fCRT,lmn,  n=0, 1, 2,.
fCCD,lmn=fCRT,lmn-ΔfCRT,lmn-1C10d-tlm+T0+ΔfCRT,lmnC10d-tim-T0.
fCCD,lmn=fCRT,lmn-ΔfCRT,lmn-1C10-tlm+T0.
fCCD,lmn=fLCD,lmn-1C20d-sl+T0+fLCD,lmn×C20d-sl+fLCD,lmn+1C20d-sl-T0,
C20t=1T0  u2trectt-tT0dt.
ΔfLCD,lmnfLCD,lmn+1-fLCD,lmn,  n=0, 1, 2,.
fCCD,lmn=fLCD,lmn,
fCCD,lmn=fLCD,lmn-ΔfLCD,lmn-1C20d-sl+T0+ΔfLCD,lmnC20d-sl+T0.
fCCD,lmn=fLCD,lmn-ΔfLCD,lmn-1C20-sl+T0.

Metrics