Abstract

The effect of the content of (NH4)2Cr2O7 in dichromated gelatin (DCG) on the binding energy of the Cr 2P 3/2 level was studied with x-ray photoelectron spectroscopy. It was found that the binding energy of the Cr 2P 3/2 level of chromium in DCG is lower than that of pure ammonium dichromate. When the content of (NH4)2Cr2O7 is not greater than 1%, the chromium in DCG has only one state, near 577.5 eV; when this content is between 1% and 20%, the chromium in DCG has two states, near 577.5 and 579.1 eV. The relative contents of these two states change with the content of (NH4)2Cr2O7. As the (NH4)2Cr2O7 content increases, the relative content of the state near 577.5 eV decreases almost linearly, but its absolute content first increases, then reaches a maximum at ∼10% (NH4)2Cr2O7, and finally decreases. In addition, the absolute content of the state near 577.5 eV changes very slowly between 5% and 15% (NH4)2Cr2O7. According to these experimental results and holography data reported in the literature, it is inferred that the chromium of the state near 577.5 eV is the chromium that forms the latent image center after exposure and then forms the hologram after development. As a result the basis for the optimum content of (NH4)2Cr2O7 is found, and an approach to increasing sensitivity is suggested through this experiment.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Writing Group of the Summary of Advanced Technology and New Materials, Summary of Advanced Technology and New Materials (Chinese Scientific Press, Beijing, 1993).
  2. S. Sjolinder, “Dichromated gelatin and light sensitivity,” J. Imag. Sci. 30, 151–154 (1986).
  3. J. Crespo, M. Pardo, M. A. Satorre, J. A. Quintana, “Ultraviolet spectrally responsive holograms in dichromated gelatin,” Appl. Opt. 32, 3068–3072 (1993).
    [CrossRef] [PubMed]
  4. J. M. Rebordao, A. A. Andrade, “Microwave drying effects on dichromated gelatin holograms,” Appl. Opt. 28, 4393–4400 (1989).
    [CrossRef] [PubMed]
  5. Z. M. Hanafi, F. M. Ismail, A. K. Mohamed, “X-ray photoelectron spectroscopy of chromium trioxide and some of its suboxides,” Z. Phys. Chem. Bd. 194, S61–S67 (1996).
    [CrossRef]
  6. J. F. Mouldel, W. F. Stickle, P. E. Sobol, K. D. BomBen, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Norwalk, Conn., 1992).
  7. A. D. Baker, D. Betteridge, Photoelectron Spectroscopy (Pergamon, New York, 1972).
  8. J. Wang, W. Wu, D. Feng, “Charge transfer of organic molecules,” in Photoelectron Spectroscopy (National Defence Industry, Beijing, 1992), Chap. 8, pp. 410–446.
  9. P. Hariharan, “Silver halide sensitized gelatin holograms: mechanism of hologram formation,” Appl. Opt. 25, 2040–2045 (1986).
    [CrossRef] [PubMed]
  10. M. Mazakova, P. Sharlandzhiev, M. Pancheva, G. Spassov, “Electron donors and heat treatment: their effect on the diffraction efficiency of dichromated gelatin reflection holograms,” Appl. Opt. 24, 2156–2160 (1985).
    [CrossRef] [PubMed]

1996 (1)

Z. M. Hanafi, F. M. Ismail, A. K. Mohamed, “X-ray photoelectron spectroscopy of chromium trioxide and some of its suboxides,” Z. Phys. Chem. Bd. 194, S61–S67 (1996).
[CrossRef]

1993 (1)

1989 (1)

1986 (2)

P. Hariharan, “Silver halide sensitized gelatin holograms: mechanism of hologram formation,” Appl. Opt. 25, 2040–2045 (1986).
[CrossRef] [PubMed]

S. Sjolinder, “Dichromated gelatin and light sensitivity,” J. Imag. Sci. 30, 151–154 (1986).

1985 (1)

Andrade, A. A.

Baker, A. D.

A. D. Baker, D. Betteridge, Photoelectron Spectroscopy (Pergamon, New York, 1972).

Betteridge, D.

A. D. Baker, D. Betteridge, Photoelectron Spectroscopy (Pergamon, New York, 1972).

BomBen, K. D.

J. F. Mouldel, W. F. Stickle, P. E. Sobol, K. D. BomBen, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Norwalk, Conn., 1992).

Crespo, J.

Feng, D.

J. Wang, W. Wu, D. Feng, “Charge transfer of organic molecules,” in Photoelectron Spectroscopy (National Defence Industry, Beijing, 1992), Chap. 8, pp. 410–446.

Hanafi, Z. M.

Z. M. Hanafi, F. M. Ismail, A. K. Mohamed, “X-ray photoelectron spectroscopy of chromium trioxide and some of its suboxides,” Z. Phys. Chem. Bd. 194, S61–S67 (1996).
[CrossRef]

Hariharan, P.

Ismail, F. M.

Z. M. Hanafi, F. M. Ismail, A. K. Mohamed, “X-ray photoelectron spectroscopy of chromium trioxide and some of its suboxides,” Z. Phys. Chem. Bd. 194, S61–S67 (1996).
[CrossRef]

Mazakova, M.

Mohamed, A. K.

Z. M. Hanafi, F. M. Ismail, A. K. Mohamed, “X-ray photoelectron spectroscopy of chromium trioxide and some of its suboxides,” Z. Phys. Chem. Bd. 194, S61–S67 (1996).
[CrossRef]

Mouldel, J. F.

J. F. Mouldel, W. F. Stickle, P. E. Sobol, K. D. BomBen, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Norwalk, Conn., 1992).

Pancheva, M.

Pardo, M.

Quintana, J. A.

Rebordao, J. M.

Satorre, M. A.

Sharlandzhiev, P.

Sjolinder, S.

S. Sjolinder, “Dichromated gelatin and light sensitivity,” J. Imag. Sci. 30, 151–154 (1986).

Sobol, P. E.

J. F. Mouldel, W. F. Stickle, P. E. Sobol, K. D. BomBen, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Norwalk, Conn., 1992).

Spassov, G.

Stickle, W. F.

J. F. Mouldel, W. F. Stickle, P. E. Sobol, K. D. BomBen, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Norwalk, Conn., 1992).

Wang, J.

J. Wang, W. Wu, D. Feng, “Charge transfer of organic molecules,” in Photoelectron Spectroscopy (National Defence Industry, Beijing, 1992), Chap. 8, pp. 410–446.

Wu, W.

J. Wang, W. Wu, D. Feng, “Charge transfer of organic molecules,” in Photoelectron Spectroscopy (National Defence Industry, Beijing, 1992), Chap. 8, pp. 410–446.

Appl. Opt. (4)

J. Imag. Sci. (1)

S. Sjolinder, “Dichromated gelatin and light sensitivity,” J. Imag. Sci. 30, 151–154 (1986).

Z. Phys. Chem. Bd. (1)

Z. M. Hanafi, F. M. Ismail, A. K. Mohamed, “X-ray photoelectron spectroscopy of chromium trioxide and some of its suboxides,” Z. Phys. Chem. Bd. 194, S61–S67 (1996).
[CrossRef]

Other (4)

J. F. Mouldel, W. F. Stickle, P. E. Sobol, K. D. BomBen, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Norwalk, Conn., 1992).

A. D. Baker, D. Betteridge, Photoelectron Spectroscopy (Pergamon, New York, 1972).

J. Wang, W. Wu, D. Feng, “Charge transfer of organic molecules,” in Photoelectron Spectroscopy (National Defence Industry, Beijing, 1992), Chap. 8, pp. 410–446.

Writing Group of the Summary of Advanced Technology and New Materials, Summary of Advanced Technology and New Materials (Chinese Scientific Press, Beijing, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

XPS-measured charts of samples. Content of (NH4)2Cr2O7 in DCG: 1, 1%; 2, 5%; 3, 10%; 4, 15%; 5, 20%; 6, 100%.

Fig. 2
Fig. 2

Relation of the relative intensity of different valence chromium with the content of (NH4)2Cr2O7 in DCG: squares, chromium with the lower binding energy; dots, chromium with the higher binding energy.

Fig. 3
Fig. 3

Relationship of the absolute intensity of different valence chromium with the content of (NH4)2Cr2O7 in DCG: squares, chromium with the lower binding energy; dots, chromium with the higher binding energy.

Tables (1)

Tables Icon

Table 1 Relationship of the XPS Measured Value of Cr 2P3/2 to the (NH4)2Cr2O7 Content in DCG

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

relative intensityPi = areaPi/areaPi,
absolute intensityPi = relative intensityPi × content ofNH42Cr2O7 in DCG,

Metrics