Abstract

We demonstrate imaging through human tissue in vivo, using a new optical technique, compensated transillumination. Immersion in a scattering medium with absorption and scattering coefficients matched to the tissue is used for drastic improvement of image contrast. The immersion medium is composed of polymer microspheres and methylene blue dye. The optical properties of the medium are matched to those of the tissue by use of a frequency-domain measurement technique. Images of a human hand taken with this technique show the internal structure, including the outlines of bones. The mechanism for the contrast is likely the absence of blood between the bones.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Bright, “Diseases of the brain and nervous system,” in Reports of Medical Cases Selected With a View of Illustrating the Symptoms and Cure of Diseases by a Reference to Morbid Anatomy (Longman, Rees, Orms, Brown, and Green, London, 1831), Vol. II, Case CCV, p. 431.
  2. T. B. Curling, “Simple hydrocele of the testis,” in A Practical Treatise on the Diseases of the Testis and of the Spermatic Cord and Scrotum (Samuel Highley, London, 1843), pp. 125–181.
  3. H. Feldmann, “History of diaphanoscopy. Pictures from the history of otorhinolaryngology, illustrated by instruments from the collection of the Ingolstadt German Medical History Museum,” Laryngorhinootologie 77, 297–304 (1998) (in German).
  4. M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–729 (1929).
  5. C. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire [breast diaphanology],” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
    [PubMed]
  6. B. Ohlsson, J. Gundersen, D.-M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–707 (1980).
    [CrossRef] [PubMed]
  7. C. H. Jones, S. P. Newbery, “Visualization of superficial vasculature using a vidicon camera tube with silicon target,” Br. J. Radiol. 50, 209–210 (1977).
    [CrossRef] [PubMed]
  8. R. F. Girolamo, J. V. Gaythorpe, “Clinical diaphanography—its present perspective,” CRC Crit. Rev. Oncology Hematology 2, 1–31 (1989).
    [CrossRef]
  9. B. Monsees, J. M. Destouet, D. Gersell, “Light scanning of nonpalpable breast lesions: reevaluation,” Radiology 167, 352 (1988).
    [PubMed]
  10. B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).
  11. B. Tromberg, A. Yodh, E. Sevick, D. Pine, eds., feature issue on Diffusing photons in turbid media, Appl. Opt. 36, 9–416 (1997).
  12. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
    [CrossRef] [PubMed]
  13. H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
    [CrossRef] [PubMed]
  14. X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” Proc. SPIE 2979, 300–306 (1997).
    [CrossRef]
  15. S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high-precision detection and localization of breast tumor,” Proc. SPIE 2979, 98–106 (1997).
    [CrossRef]
  16. X. D. Li, J. P. Culver, T. Durduran, B. Chance, A. G. Yodh, D. N. Pattanayak, “Diffraction tomography with diffuse photon density waves: clinical studies and background subtraction,” in Advances in Optical Imaging and Photon Migration, G. Fujimoto, M. S. Patterson, eds., Vol. 21 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1998), pp. 281–283.
  17. J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
    [CrossRef] [PubMed]
  18. B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
    [CrossRef]

1998 (2)

H. Feldmann, “History of diaphanoscopy. Pictures from the history of otorhinolaryngology, illustrated by instruments from the collection of the Ingolstadt German Medical History Museum,” Laryngorhinootologie 77, 297–304 (1998) (in German).

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

1997 (3)

X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” Proc. SPIE 2979, 300–306 (1997).
[CrossRef]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high-precision detection and localization of breast tumor,” Proc. SPIE 2979, 98–106 (1997).
[CrossRef]

B. Tromberg, A. Yodh, E. Sevick, D. Pine, eds., feature issue on Diffusing photons in turbid media, Appl. Opt. 36, 9–416 (1997).

1996 (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

1993 (2)

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

1989 (1)

R. F. Girolamo, J. V. Gaythorpe, “Clinical diaphanography—its present perspective,” CRC Crit. Rev. Oncology Hematology 2, 1–31 (1989).
[CrossRef]

1988 (1)

B. Monsees, J. M. Destouet, D. Gersell, “Light scanning of nonpalpable breast lesions: reevaluation,” Radiology 167, 352 (1988).
[PubMed]

1980 (1)

B. Ohlsson, J. Gundersen, D.-M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–707 (1980).
[CrossRef] [PubMed]

1977 (1)

C. H. Jones, S. P. Newbery, “Visualization of superficial vasculature using a vidicon camera tube with silicon target,” Br. J. Radiol. 50, 209–210 (1977).
[CrossRef] [PubMed]

1972 (1)

C. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire [breast diaphanology],” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

1929 (1)

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Beauvoit, B.

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[CrossRef] [PubMed]

Bright, R.

R. Bright, “Diseases of the brain and nervous system,” in Reports of Medical Cases Selected With a View of Illustrating the Symptoms and Cure of Diseases by a Reference to Morbid Anatomy (Longman, Rees, Orms, Brown, and Green, London, 1831), Vol. II, Case CCV, p. 431.

Chance, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high-precision detection and localization of breast tumor,” Proc. SPIE 2979, 98–106 (1997).
[CrossRef]

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[CrossRef] [PubMed]

X. D. Li, J. P. Culver, T. Durduran, B. Chance, A. G. Yodh, D. N. Pattanayak, “Diffraction tomography with diffuse photon density waves: clinical studies and background subtraction,” in Advances in Optical Imaging and Photon Migration, G. Fujimoto, M. S. Patterson, eds., Vol. 21 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1998), pp. 281–283.

Cope, M.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Culver, J. P.

X. D. Li, J. P. Culver, T. Durduran, B. Chance, A. G. Yodh, D. N. Pattanayak, “Diffraction tomography with diffuse photon density waves: clinical studies and background subtraction,” in Advances in Optical Imaging and Photon Migration, G. Fujimoto, M. S. Patterson, eds., Vol. 21 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1998), pp. 281–283.

Curling, T. B.

T. B. Curling, “Simple hydrocele of the testis,” in A Practical Treatise on the Diseases of the Testis and of the Spermatic Cord and Scrotum (Samuel Highley, London, 1843), pp. 125–181.

Cutler, M.

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Destouet, J. M.

B. Monsees, J. M. Destouet, D. Gersell, “Light scanning of nonpalpable breast lesions: reevaluation,” Radiology 167, 352 (1988).
[PubMed]

Durduran, T.

X. D. Li, J. P. Culver, T. Durduran, B. Chance, A. G. Yodh, D. N. Pattanayak, “Diffraction tomography with diffuse photon density waves: clinical studies and background subtraction,” in Advances in Optical Imaging and Photon Migration, G. Fujimoto, M. S. Patterson, eds., Vol. 21 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1998), pp. 281–283.

Fantini, S.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Faris, G. W.

X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” Proc. SPIE 2979, 300–306 (1997).
[CrossRef]

Feldmann, H.

H. Feldmann, “History of diaphanoscopy. Pictures from the history of otorhinolaryngology, illustrated by instruments from the collection of the Ingolstadt German Medical History Museum,” Laryngorhinootologie 77, 297–304 (1998) (in German).

Fishkin, J. B.

Franceschini, M. A.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Gaida, G.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Gaythorpe, J. V.

R. F. Girolamo, J. V. Gaythorpe, “Clinical diaphanography—its present perspective,” CRC Crit. Rev. Oncology Hematology 2, 1–31 (1989).
[CrossRef]

Gersell, D.

B. Monsees, J. M. Destouet, D. Gersell, “Light scanning of nonpalpable breast lesions: reevaluation,” Radiology 167, 352 (1988).
[PubMed]

Girolamo, R. F.

R. F. Girolamo, J. V. Gaythorpe, “Clinical diaphanography—its present perspective,” CRC Crit. Rev. Oncology Hematology 2, 1–31 (1989).
[CrossRef]

Gratton, E.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

J. B. Fishkin, E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10, 127–140 (1993).
[CrossRef] [PubMed]

Gros, C.

C. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire [breast diaphanology],” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Gundersen, J.

B. Ohlsson, J. Gundersen, D.-M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–707 (1980).
[CrossRef] [PubMed]

Hummel, Y.

C. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire [breast diaphanology],” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Jess, H.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Jones, C. H.

C. H. Jones, S. P. Newbery, “Visualization of superficial vasculature using a vidicon camera tube with silicon target,” Br. J. Radiol. 50, 209–210 (1977).
[CrossRef] [PubMed]

Kaschke, M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Li, X. D.

X. D. Li, J. P. Culver, T. Durduran, B. Chance, A. G. Yodh, D. N. Pattanayak, “Diffraction tomography with diffuse photon density waves: clinical studies and background subtraction,” in Advances in Optical Imaging and Photon Migration, G. Fujimoto, M. S. Patterson, eds., Vol. 21 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1998), pp. 281–283.

Liu, H.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high-precision detection and localization of breast tumor,” Proc. SPIE 2979, 98–106 (1997).
[CrossRef]

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[CrossRef] [PubMed]

Mantulin, W. W.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Miwa, M.

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[CrossRef] [PubMed]

Moesta, K. T.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Monsees, B.

B. Monsees, J. M. Destouet, D. Gersell, “Light scanning of nonpalpable breast lesions: reevaluation,” Radiology 167, 352 (1988).
[PubMed]

Newbery, S. P.

C. H. Jones, S. P. Newbery, “Visualization of superficial vasculature using a vidicon camera tube with silicon target,” Br. J. Radiol. 50, 209–210 (1977).
[CrossRef] [PubMed]

Nilsson, D.-M.

B. Ohlsson, J. Gundersen, D.-M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–707 (1980).
[CrossRef] [PubMed]

Nioka, S.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high-precision detection and localization of breast tumor,” Proc. SPIE 2979, 98–106 (1997).
[CrossRef]

Ohlsson, B.

B. Ohlsson, J. Gundersen, D.-M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–707 (1980).
[CrossRef] [PubMed]

Pattanayak, D. N.

X. D. Li, J. P. Culver, T. Durduran, B. Chance, A. G. Yodh, D. N. Pattanayak, “Diffraction tomography with diffuse photon density waves: clinical studies and background subtraction,” in Advances in Optical Imaging and Photon Migration, G. Fujimoto, M. S. Patterson, eds., Vol. 21 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1998), pp. 281–283.

Quenneville, Y.

C. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire [breast diaphanology],” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Ramanujam, N.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Schlag, P. M.

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Stinger, L.

X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” Proc. SPIE 2979, 300–306 (1997).
[CrossRef]

Tromberg, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Wang, N. G.

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[CrossRef] [PubMed]

Wu, X.

X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” Proc. SPIE 2979, 300–306 (1997).
[CrossRef]

Xie, C.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high-precision detection and localization of breast tumor,” Proc. SPIE 2979, 98–106 (1997).
[CrossRef]

Yodh, A. G.

X. D. Li, J. P. Culver, T. Durduran, B. Chance, A. G. Yodh, D. N. Pattanayak, “Diffraction tomography with diffuse photon density waves: clinical studies and background subtraction,” in Advances in Optical Imaging and Photon Migration, G. Fujimoto, M. S. Patterson, eds., Vol. 21 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1998), pp. 281–283.

Zhang, Y.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high-precision detection and localization of breast tumor,” Proc. SPIE 2979, 98–106 (1997).
[CrossRef]

Zhou, S.

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high-precision detection and localization of breast tumor,” Proc. SPIE 2979, 98–106 (1997).
[CrossRef]

Anal. Biochem. (1)

H. Liu, M. Miwa, B. Beauvoit, N. G. Wang, B. Chance, “Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy,” Anal. Biochem. 213, 378–385 (1993).
[CrossRef] [PubMed]

Appl. Opt. (1)

Br. J. Radiol. (1)

C. H. Jones, S. P. Newbery, “Visualization of superficial vasculature using a vidicon camera tube with silicon target,” Br. J. Radiol. 50, 209–210 (1977).
[CrossRef] [PubMed]

CRC Crit. Rev. Oncology Hematology (1)

R. F. Girolamo, J. V. Gaythorpe, “Clinical diaphanography—its present perspective,” CRC Crit. Rev. Oncology Hematology 2, 1–31 (1989).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Radiol. Electrol. Med. Nucl. (1)

C. Gros, Y. Quenneville, Y. Hummel, “Diaphanologie mammaire [breast diaphanology],” J. Radiol. Electrol. Med. Nucl. 53, 297–306 (1972).
[PubMed]

Laryngorhinootologie (1)

H. Feldmann, “History of diaphanoscopy. Pictures from the history of otorhinolaryngology, illustrated by instruments from the collection of the Ingolstadt German Medical History Museum,” Laryngorhinootologie 77, 297–304 (1998) (in German).

Med. Phys. (1)

S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149–157 (1996).
[CrossRef] [PubMed]

Proc. SPIE (2)

X. Wu, L. Stinger, G. W. Faris, “Determination of tissue properties by immersion in a matched scattering fluid,” Proc. SPIE 2979, 300–306 (1997).
[CrossRef]

S. Zhou, C. Xie, S. Nioka, H. Liu, Y. Zhang, B. Chance, “Phased-array instrumentation appropriate to high-precision detection and localization of breast tumor,” Proc. SPIE 2979, 98–106 (1997).
[CrossRef]

Radiology (1)

B. Monsees, J. M. Destouet, D. Gersell, “Light scanning of nonpalpable breast lesions: reevaluation,” Radiology 167, 352 (1988).
[PubMed]

Rev. Sci. Instrum. (1)

B. Chance, M. Cope, E. Gratton, N. Ramanujam, B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Surg. Gynecol. Obstet. (1)

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

World J. Surg. (1)

B. Ohlsson, J. Gundersen, D.-M. Nilsson, “Diaphanography: a method for evaluation of the female breast,” World J. Surg. 4, 701–707 (1980).
[CrossRef] [PubMed]

Other (4)

X. D. Li, J. P. Culver, T. Durduran, B. Chance, A. G. Yodh, D. N. Pattanayak, “Diffraction tomography with diffuse photon density waves: clinical studies and background subtraction,” in Advances in Optical Imaging and Photon Migration, G. Fujimoto, M. S. Patterson, eds., Vol. 21 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C.1998), pp. 281–283.

R. Bright, “Diseases of the brain and nervous system,” in Reports of Medical Cases Selected With a View of Illustrating the Symptoms and Cure of Diseases by a Reference to Morbid Anatomy (Longman, Rees, Orms, Brown, and Green, London, 1831), Vol. II, Case CCV, p. 431.

T. B. Curling, “Simple hydrocele of the testis,” in A Practical Treatise on the Diseases of the Testis and of the Spermatic Cord and Scrotum (Samuel Highley, London, 1843), pp. 125–181.

B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Apparatus for compensated transillumination.

Fig. 2
Fig. 2

Image of a human hand taken with compensated transillumination.

Fig. 3
Fig. 3

Image of a human hand taken without compensation.

Metrics