Abstract

A detailed investigation of the use of time-resolved trasmittance for the optical characterization of scattering media by use of different analytical solutions to the diffusion equation has been performed. A femtosecond Ti:sapphire laser working at 800 nm and a streak camera with a time resolution of a few picoseconds were employed. Different latex and Intralipid solutions as well as biological samples were investigated. Reduced scattering coefficients were evaluated, and good agreement with the Mie predictions was found. An estimation of the order of magnitude of the absorption coefficient was obtained for the low-absorbance samples examined. These studies confirm experimentally that time-resolved trasmittance can be employed usefully for evaluating μs′ values of thick scattering samples when a proper theoretical description that takes into account realistic boundary conditions is used.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 22, 2166–2185 (1990).
    [CrossRef]
  2. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase function of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987); S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
    [CrossRef] [PubMed]
  3. J. R. Lackowicz, K. Berndt, “Life time-selected fluorescence imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
    [CrossRef]
  4. E. Gratton, W. W. Mantulin, M. J. Vande Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
    [CrossRef]
  5. J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
    [CrossRef] [PubMed]
  6. J. C. Hebden, S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996).
    [CrossRef] [PubMed]
  7. D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
    [CrossRef] [PubMed]
  8. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  9. F. Martelli, D. Contini, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 31, 4600–4612 (1997).
    [CrossRef]
  10. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1988).
  11. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 208–213.
  12. T. J. Farrell, M. S. Patterson, M. Essenpreis “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998).
    [CrossRef]
  13. S. Feng, F. Zeng, B. Chance, “Monte Carlo simulation of photon migration path distribution in multiple scattering media,” in Photon Migration and Imaginq in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 78–88 (1993).
    [CrossRef]
  14. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2431 (1994).
    [CrossRef]
  15. S. J. Matcher, “Closed-form expressions for obtaining the absorption and scattering coefficients of a turbid medium with time-resolved spectroscopy,” Appl. Opt. 36, 8298–8302 (1997).
    [CrossRef]
  16. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, London, 1978).
  17. M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and trasmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 12, 2331–2336 (1989).
    [CrossRef]
  18. M. Bassani, F. Martelli, G. Zaccanti, D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22, 853–855 (1997).
    [CrossRef] [PubMed]
  19. G. H. Weiss, “Statistical properties of the penetration of photons into a semi-infinite turbid medium: a random-walk analysis,” Appl. Opt. 37, 3558–3563 (1998).
    [CrossRef]
  20. J. M. Kaltenbach, M. Kaschke, “Frequency- and time-domain modeling of light transport in random media,” in Medical Optical Tomography: Functional Imaging and Monitoring,” Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 65–85.
  21. A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
    [CrossRef]
  22. J.-M. Tualle, B. Gelebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124, 216–221 (1995).
    [CrossRef]
  23. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
    [CrossRef] [PubMed]
  24. CERN Program Library (CERN Computer Center, CERN CH-1211, Geneva 23, Switzerland, 1993).
  25. F. James, M. Rods, minuit-function Minimization and Error Analysis (Cern Computer Center, CERN CH-1211, Geneva 23, Switzerland, 1983).
  26. J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–322 (1965).
    [CrossRef]
  27. M. Lepore, I. Delfino, P. L. Indovina, G. Guida, G. Roberti, E. Rossa, P. Scampoli, “Investigation of optical properties of scattering solutions by time-resolved transmittance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 284–293 (1997).
  28. I. Delfino, M. Lepore, “Optical properties of scattering solutions by time-resolved transmittance spectroscopy,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 351–359 (1997).
    [CrossRef]
  29. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
    [CrossRef] [PubMed]
  30. C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy,” Rev. Mod. Phys. 53, 528–533 (1991).
  31. H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light-scattering in Intralipid 10 in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  32. I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of an aqueous suspension of Intralipid, a fat emulsion,” Phys. Med. Biol. 12, 1927–1930 (1989).
    [CrossRef]
  33. M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanism II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).
  34. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [CrossRef] [PubMed]
  35. J. P. A. Marijnissen, W. M. Star, J. L. V. Delft, N. A. P. Franken, “Light intensity measurements in optical phantoms and in vitro during HpD photoradiation treatment using a miniature light detector with isotropic response,” in Photodynamic Therapy of Tumors and Other Diseases, G. Jori, C. Perria, eds. (Libreria Progetto, Padova, Italy, 1985), pp. 127–132.
  36. B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
    [CrossRef]
  37. J. L. Karagiannes, Z. Zhang, B. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissue phantoms,” Appl. Opt. 28, 2311–2317 (1989).
    [CrossRef] [PubMed]
  38. F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array measurement. Part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
    [CrossRef]
  39. K. M. Yoo, B. B. Das, F. Liu, R. R. Alfano, “Ultrashort laser pulse propagation and imaging in biological tissue and model random media: steps toward optical mammography,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 425–449.
  40. J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
    [CrossRef]
  41. A. Kienle, L. Lilger, M. S. Patterson, R. Hist, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
    [CrossRef] [PubMed]

1998

1997

1996

1995

J.-M. Tualle, B. Gelebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124, 216–221 (1995).
[CrossRef]

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array measurement. Part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

1994

R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
[CrossRef]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2431 (1994).
[CrossRef]

1993

E. Gratton, W. W. Mantulin, M. J. Vande Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
[CrossRef] [PubMed]

1992

1991

J. R. Lackowicz, K. Berndt, “Life time-selected fluorescence imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light-scattering in Intralipid 10 in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy,” Rev. Mod. Phys. 53, 528–533 (1991).

1990

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 22, 2166–2185 (1990).
[CrossRef]

1989

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and trasmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 12, 2331–2336 (1989).
[CrossRef]

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of an aqueous suspension of Intralipid, a fat emulsion,” Phys. Med. Biol. 12, 1927–1930 (1989).
[CrossRef]

J. L. Karagiannes, Z. Zhang, B. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissue phantoms,” Appl. Opt. 28, 2311–2317 (1989).
[CrossRef] [PubMed]

1987

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase function of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987); S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
[CrossRef] [PubMed]

1986

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

1973

1965

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–322 (1965).
[CrossRef]

Alfano, R. R.

K. M. Yoo, B. B. Das, F. Liu, R. R. Alfano, “Ultrashort laser pulse propagation and imaging in biological tissue and model random media: steps toward optical mammography,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 425–449.

Arridge, S. R.

Avrillier, S.

J.-M. Tualle, B. Gelebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124, 216–221 (1995).
[CrossRef]

Bassani, M.

Berndt, K.

J. R. Lackowicz, K. Berndt, “Life time-selected fluorescence imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

Bevilacqua, F.

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array measurement. Part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 208–213.

Bonner, R. F.

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Burns, D. M.

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

Chance, B.

E. Gratton, W. W. Mantulin, M. J. Vande Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and trasmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 12, 2331–2336 (1989).
[CrossRef]

S. Feng, F. Zeng, B. Chance, “Monte Carlo simulation of photon migration path distribution in multiple scattering media,” in Photon Migration and Imaginq in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 78–88 (1993).
[CrossRef]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanism II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 22, 2166–2185 (1990).
[CrossRef]

Contini, D.

Cubeddu, R.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2431 (1994).
[CrossRef]

Das, B. B.

K. M. Yoo, B. B. Das, F. Liu, R. R. Alfano, “Ultrashort laser pulse propagation and imaging in biological tissue and model random media: steps toward optical mammography,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 425–449.

Dawson, J. B.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of an aqueous suspension of Intralipid, a fat emulsion,” Phys. Med. Biol. 12, 1927–1930 (1989).
[CrossRef]

de Haller, E. B.

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array measurement. Part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

Delfino, I.

M. Lepore, I. Delfino, P. L. Indovina, G. Guida, G. Roberti, E. Rossa, P. Scampoli, “Investigation of optical properties of scattering solutions by time-resolved transmittance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 284–293 (1997).

I. Delfino, M. Lepore, “Optical properties of scattering solutions by time-resolved transmittance spectroscopy,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 351–359 (1997).
[CrossRef]

Delft, J. L. V.

J. P. A. Marijnissen, W. M. Star, J. L. V. Delft, N. A. P. Franken, “Light intensity measurements in optical phantoms and in vitro during HpD photoradiation treatment using a miniature light detector with isotropic response,” in Photodynamic Therapy of Tumors and Other Diseases, G. Jori, C. Perria, eds. (Libreria Progetto, Padova, Italy, 1985), pp. 127–132.

Depeursinge, C.

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array measurement. Part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

Driver, I.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of an aqueous suspension of Intralipid, a fat emulsion,” Phys. Med. Biol. 12, 1927–1930 (1989).
[CrossRef]

Essenpreis, M.

Farrell, T. J.

Feather, J. W.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of an aqueous suspension of Intralipid, a fat emulsion,” Phys. Med. Biol. 12, 1927–1930 (1989).
[CrossRef]

Feng, S.

S. Feng, F. Zeng, B. Chance, “Monte Carlo simulation of photon migration path distribution in multiple scattering media,” in Photon Migration and Imaginq in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 78–88 (1993).
[CrossRef]

Feng, T.-C.

Fishkin, J. B.

E. Gratton, W. W. Mantulin, M. J. Vande Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1988).

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase function of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987); S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
[CrossRef] [PubMed]

Franken, N. A. P.

J. P. A. Marijnissen, W. M. Star, J. L. V. Delft, N. A. P. Franken, “Light intensity measurements in optical phantoms and in vitro during HpD photoradiation treatment using a miniature light detector with isotropic response,” in Photodynamic Therapy of Tumors and Other Diseases, G. Jori, C. Perria, eds. (Libreria Progetto, Padova, Italy, 1985), pp. 127–132.

Gandjbakhche, A. H.

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Gelebart, B.

J.-M. Tualle, B. Gelebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124, 216–221 (1995).
[CrossRef]

Gratton, E.

E. Gratton, W. W. Mantulin, M. J. Vande Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Grossweiner, B.

Guida, G.

M. Lepore, I. Delfino, P. L. Indovina, G. Guida, G. Roberti, E. Rossa, P. Scampoli, “Investigation of optical properties of scattering solutions by time-resolved transmittance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 284–293 (1997).

Hale, G. M.

Haskell, R. C.

Hebden, J. C.

Hefetz, Y.

Hist, R.

Indovina, P. L.

M. Lepore, I. Delfino, P. L. Indovina, G. Guida, G. Roberti, E. Rossa, P. Scampoli, “Investigation of optical properties of scattering solutions by time-resolved transmittance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 284–293 (1997).

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, London, 1978).

Jacques, S. L.

James, F.

F. James, M. Rods, minuit-function Minimization and Error Analysis (Cern Computer Center, CERN CH-1211, Geneva 23, Switzerland, 1983).

Kaltenbach, J. M.

J. M. Kaltenbach, M. Kaschke, “Frequency- and time-domain modeling of light transport in random media,” in Medical Optical Tomography: Functional Imaging and Monitoring,” Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 65–85.

Karagiannes, J. L.

Kaschke, M.

J. M. Kaltenbach, M. Kaschke, “Frequency- and time-domain modeling of light transport in random media,” in Medical Optical Tomography: Functional Imaging and Monitoring,” Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 65–85.

Kienle, A.

King, P. R.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of an aqueous suspension of Intralipid, a fat emulsion,” Phys. Med. Biol. 12, 1927–1930 (1989).
[CrossRef]

Lackowicz, J. R.

J. R. Lackowicz, K. Berndt, “Life time-selected fluorescence imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

Lepore, M.

M. Lepore, I. Delfino, P. L. Indovina, G. Guida, G. Roberti, E. Rossa, P. Scampoli, “Investigation of optical properties of scattering solutions by time-resolved transmittance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 284–293 (1997).

I. Delfino, M. Lepore, “Optical properties of scattering solutions by time-resolved transmittance spectroscopy,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 351–359 (1997).
[CrossRef]

Lilger, L.

Liu, F.

K. M. Yoo, B. B. Das, F. Liu, R. R. Alfano, “Ultrashort laser pulse propagation and imaging in biological tissue and model random media: steps toward optical mammography,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 425–449.

Madsen, S. J.

Mantulin, W. W.

E. Gratton, W. W. Mantulin, M. J. Vande Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Marijnissen, J. P. A.

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

J. P. A. Marijnissen, W. M. Star, J. L. V. Delft, N. A. P. Franken, “Light intensity measurements in optical phantoms and in vitro during HpD photoradiation treatment using a miniature light detector with isotropic response,” in Photodynamic Therapy of Tumors and Other Diseases, G. Jori, C. Perria, eds. (Libreria Progetto, Padova, Italy, 1985), pp. 127–132.

Maris, M. B.

E. Gratton, W. W. Mantulin, M. J. Vande Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Marquet, P.

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array measurement. Part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

Martelli, F.

Matcher, S. J.

McAdams, M. S.

Mead, R.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–322 (1965).
[CrossRef]

Moes, C. J. M.

Moulton, J. D.

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanism II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

Musolino, M.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2431 (1994).
[CrossRef]

Nelder, J. A.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–322 (1965).
[CrossRef]

Nossal, R.

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Ollivier, J. P.

J.-M. Tualle, B. Gelebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124, 216–221 (1995).
[CrossRef]

Park, Y. D.

Patel, C. K. N.

C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy,” Rev. Mod. Phys. 53, 528–533 (1991).

Patterson, M. S.

T. J. Farrell, M. S. Patterson, M. Essenpreis “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998).
[CrossRef]

A. Kienle, L. Lilger, M. S. Patterson, R. Hist, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and trasmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 12, 2331–2336 (1989).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase function of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987); S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanism II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

Pifferi, A.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2431 (1994).
[CrossRef]

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light-scattering in Intralipid 10 in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 22, 2166–2185 (1990).
[CrossRef]

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1988).

Querry, M. R.

Roberti, G.

M. Lepore, I. Delfino, P. L. Indovina, G. Guida, G. Roberti, E. Rossa, P. Scampoli, “Investigation of optical properties of scattering solutions by time-resolved transmittance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 284–293 (1997).

Rods, M.

F. James, M. Rods, minuit-function Minimization and Error Analysis (Cern Computer Center, CERN CH-1211, Geneva 23, Switzerland, 1983).

Rossa, E.

M. Lepore, I. Delfino, P. L. Indovina, G. Guida, G. Roberti, E. Rossa, P. Scampoli, “Investigation of optical properties of scattering solutions by time-resolved transmittance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 284–293 (1997).

Scampoli, P.

M. Lepore, I. Delfino, P. L. Indovina, G. Guida, G. Roberti, E. Rossa, P. Scampoli, “Investigation of optical properties of scattering solutions by time-resolved transmittance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 284–293 (1997).

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

J. P. A. Marijnissen, W. M. Star, J. L. V. Delft, N. A. P. Franken, “Light intensity measurements in optical phantoms and in vitro during HpD photoradiation treatment using a miniature light detector with isotropic response,” in Photodynamic Therapy of Tumors and Other Diseases, G. Jori, C. Perria, eds. (Libreria Progetto, Padova, Italy, 1985), pp. 127–132.

Steiner, R.

Svaasand, L. O.

Tam, A. C.

C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy,” Rev. Mod. Phys. 53, 528–533 (1991).

Taroni, P.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2431 (1994).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1988).

Tinet, E.

J.-M. Tualle, B. Gelebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124, 216–221 (1995).
[CrossRef]

Tromberg, B.

Tsay, T.-T.

Tualle, J.-M.

J.-M. Tualle, B. Gelebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124, 216–221 (1995).
[CrossRef]

Valentini, G.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2431 (1994).
[CrossRef]

van Gemert, M. J. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light-scattering in Intralipid 10 in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

van Marle, J.

van Staveren, H. J.

Vande Ven, M. J.

E. Gratton, W. W. Mantulin, M. J. Vande Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Weiss, G. H.

G. H. Weiss, “Statistical properties of the penetration of photons into a semi-infinite turbid medium: a random-walk analysis,” Appl. Opt. 37, 3558–3563 (1998).
[CrossRef]

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 22, 2166–2185 (1990).
[CrossRef]

Wetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1988).

Wilson, B. C.

A. Kienle, L. Lilger, M. S. Patterson, R. Hist, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and trasmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 12, 2331–2336 (1989).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase function of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987); S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanism II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

Wong, K. S.

Yoo, K. M.

K. M. Yoo, B. B. Das, F. Liu, R. R. Alfano, “Ultrashort laser pulse propagation and imaging in biological tissue and model random media: steps toward optical mammography,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 425–449.

Zaccanti, G.

Zeng, F.

S. Feng, F. Zeng, B. Chance, “Monte Carlo simulation of photon migration path distribution in multiple scattering media,” in Photon Migration and Imaginq in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 78–88 (1993).
[CrossRef]

Zhang, Z.

Appl. Opt.

M. S. Patterson, B. Chance, B. C. Wilson, “Time-resolved reflectance and trasmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 12, 2331–2336 (1989).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, M. J. C. van Gemert, “Light-scattering in Intralipid 10 in the wavelength range 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt. 31, 3509–3517 (1992).
[CrossRef] [PubMed]

J. C. Hebden, K. S. Wong, “Time-resolved optical tomography,” Appl. Opt. 32, 372–380 (1993).
[CrossRef] [PubMed]

D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
[CrossRef] [PubMed]

S. J. Matcher, “Closed-form expressions for obtaining the absorption and scattering coefficients of a turbid medium with time-resolved spectroscopy,” Appl. Opt. 36, 8298–8302 (1997).
[CrossRef]

T. J. Farrell, M. S. Patterson, M. Essenpreis “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt. 37, 1958–1972 (1998).
[CrossRef]

G. H. Weiss, “Statistical properties of the penetration of photons into a semi-infinite turbid medium: a random-walk analysis,” Appl. Opt. 37, 3558–3563 (1998).
[CrossRef]

A. Kienle, L. Lilger, M. S. Patterson, R. Hist, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996).
[CrossRef] [PubMed]

F. Martelli, D. Contini, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results,” Appl. Opt. 31, 4600–4612 (1997).
[CrossRef]

G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973).
[CrossRef] [PubMed]

J. L. Karagiannes, Z. Zhang, B. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissue phantoms,” Appl. Opt. 28, 2311–2317 (1989).
[CrossRef] [PubMed]

Bioimaging

E. Gratton, W. W. Mantulin, M. J. Vande Ven, J. B. Fishkin, M. B. Maris, B. Chance, “A novel approach to laser tomography,” Bioimaging 1, 40–46 (1993).
[CrossRef]

Comput. J.

J. A. Nelder, R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–322 (1965).
[CrossRef]

IEEE J. Quantum Electron.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for application to the optical characterization of tissues,” IEEE J. Quantum Electron. 30, 2421–2431 (1994).
[CrossRef]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 22, 2166–2185 (1990).
[CrossRef]

J. Opt. Soc. Am. A

Lasers Med. Sci.

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

J. P. A. Marijnissen, W. M. Star, “Quantitative light dosimetry in vitro and in vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

Lasers Surg. Med.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[CrossRef] [PubMed]

Med. Phys.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total attenuation coefficients and scattering phase function of tissues and phantom materials at 633 nm,” Med. Phys. 14, 835–841 (1987); S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular dependence of HeNe laser light scattering by human dermis,” Lasers Life Sci. 1, 309–333 (1987).
[CrossRef] [PubMed]

Opt. Commun.

J.-M. Tualle, B. Gelebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time optical coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 124, 216–221 (1995).
[CrossRef]

Opt. Eng.

F. Bevilacqua, P. Marquet, C. Depeursinge, E. B. de Haller, “Determination of reduced scattering and absorption coefficients by a single charge-coupled device array measurement. Part II: measurements on biological tissues,” Opt. Eng. 34, 2064–2069 (1995).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

I. Driver, J. W. Feather, P. R. King, J. B. Dawson, “The optical properties of an aqueous suspension of Intralipid, a fat emulsion,” Phys. Med. Biol. 12, 1927–1930 (1989).
[CrossRef]

Phys. Rev. E

A. H. Gandjbakhche, G. H. Weiss, R. F. Bonner, R. Nossal, “Photon path-length distributions for transmission through optically turbid slabs,” Phys. Rev. E 48, 810–818 (1993).
[CrossRef]

Rev. Mod. Phys.

C. K. N. Patel, A. C. Tam, “Pulsed optoacoustic spectroscopy,” Rev. Mod. Phys. 53, 528–533 (1991).

Rev. Sci. Instrum.

J. R. Lackowicz, K. Berndt, “Life time-selected fluorescence imaging using an RF phase-sensitive camera,” Rev. Sci. Instrum. 62, 1727–1734 (1991).
[CrossRef]

Other

J. M. Kaltenbach, M. Kaschke, “Frequency- and time-domain modeling of light transport in random media,” in Medical Optical Tomography: Functional Imaging and Monitoring,” Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 65–85.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Wetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1988).

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), pp. 208–213.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, London, 1978).

CERN Program Library (CERN Computer Center, CERN CH-1211, Geneva 23, Switzerland, 1993).

F. James, M. Rods, minuit-function Minimization and Error Analysis (Cern Computer Center, CERN CH-1211, Geneva 23, Switzerland, 1983).

M. Lepore, I. Delfino, P. L. Indovina, G. Guida, G. Roberti, E. Rossa, P. Scampoli, “Investigation of optical properties of scattering solutions by time-resolved transmittance,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 284–293 (1997).

I. Delfino, M. Lepore, “Optical properties of scattering solutions by time-resolved transmittance spectroscopy,” in Photon Propagation in Tissues III, D. A. Benaron, B. Chance, M. Ferrari, eds., Proc. SPIE3194, 351–359 (1997).
[CrossRef]

S. Feng, F. Zeng, B. Chance, “Monte Carlo simulation of photon migration path distribution in multiple scattering media,” in Photon Migration and Imaginq in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 78–88 (1993).
[CrossRef]

K. M. Yoo, B. B. Das, F. Liu, R. R. Alfano, “Ultrashort laser pulse propagation and imaging in biological tissue and model random media: steps toward optical mammography,” in Medical Optical Tomography: Functional Imaging and Monitoring, Vol. IS11 of SPIE Institute Series, G. Mueller, B. Chance, R. R. Alfano, S. Arridge, J. Beuthan, E. Gratton, M. Kaschke, B. Masters, S. Svanberg, P. van der Zee, eds. (SPIE, Bellingham, Wash., 1993), pp. 425–449.

M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time resolved light scattering measurements to photodynamic therapy dosimetry,” in Photodynamic Therapy: Mechanism II, T. J. Dougherty, ed., Proc. SPIE1203, 62–75 (1990).

J. P. A. Marijnissen, W. M. Star, J. L. V. Delft, N. A. P. Franken, “Light intensity measurements in optical phantoms and in vitro during HpD photoradiation treatment using a miniature light detector with isotropic response,” in Photodynamic Therapy of Tumors and Other Diseases, G. Jori, C. Perria, eds. (Libreria Progetto, Padova, Italy, 1985), pp. 127–132.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Temporal behaviors of the theoretical functions used in the fitting procedure: Eq. (2), solid curve; Eq. (3), dashed–dotted curve; Eq. (4), dashed curve. The plots are for a 2-cm-thick sample with an absorption coefficient of μ a = 0.02 cm-1 and a reduced scattering coefficient of μ s ′ = 10 cm-1.

Fig. 2
Fig. 2

Schematic drawing of the experimental setup. The Ti:sapphire laser is a Coherent Model MIRA 900DUAL, and the argon-ion laser is a Coherent Model Sabre 400. The detector is a Hamamatsu Model C5680 streak camera equipped with a synchroscan unit. M1, M2, M3: mirrors; NF, neutral filter; L1, L2: lenses; BS, beam splitter; PD, photodiode (Hamamatsu, Model C1808).

Fig. 3
Fig. 3

Experimental values (squares) of the reduced scattering coefficient μ s ′ of different concentrations of Intralipid solutions. All results are reported with the experimental error. (a) Values obtained by use of expression T 1 in the fitting procedure. (b) Values obtained by use of T 2. (c) Values obtained by use of T 3. The theoretical predictions from Mie theory are represented by the solid curves. The insets show the results for concentrations of C = 1%–10% expanded.

Fig. 4
Fig. 4

Experimental values of the absorption coefficient μ a of different concentrations of Intralipid solutions. All results are reported with the experimental error. Values obtained by use of (a) T 1, (b) T 2, (c) T 3 in the fitting procedure.

Fig. 5
Fig. 5

Experimental values of the absorption coefficient μ a of different concentrations of Intralipid solutions. The values were obtained by use of Matcher’s closed-form method. The error is within 10%.

Tables (7)

Tables Icon

Table 1 Theoretical Optical Properties Obtained by the Mie Theory for the Investigated Latex-Particle Solutions

Tables Icon

Table 2 Experimental Values of the Reduced Scattering Coefficient μs′ for the Investigated Latex-Particle Solutions

Tables Icon

Table 3 Experimental Values of the Absorption Coefficient μa for the Latex-Particle Solutions Investigated

Tables Icon

Table 4 Examples of Experimental Data on the Optical Properties for a Commercial 10% Intralipid Solutiona

Tables Icon

Table 5 Experimental Values of the Reduced Scattering Coefficient μs′ for the Biological Samples Investigated

Tables Icon

Table 6 Experimental Values of the Absorption Coefficient μa for the Biological Samples Investigated

Tables Icon

Table 7 Experimental Data on Biological Tissues from the Literature

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1ct Φr, t-D2Φr, t+μaΦr, t=Sr, t,
T1d, t=4πD1c-1/2t-t0-3/2exp-μact-t0×d-z0exp-3d-z024D1ct-t0-d+z0×exp-d+z024D1ct-t0+3d-z0×exp-3d-z024D1ct-t0+3d+z0×exp-3d+z024D1ct-t0,
T2d, t=-4πcD2-1/2t-t0-3/2exp-μact-t0×d+z0exp-d+z024D2ct-t0-d-z0exp-d-z024D2ct-t0+3d+z0exp-3d+z024D2ct-t0-3d-z0exp-3d-z024D2ct-t0+5d+z0exp-5d+z024D2ct-t0,
D2=13μa+μs1-3μa3(μa+μs).
T3d, t=124πcD3-1/2t-t0-3/2exp-μact-t0×m=-33z1,m exp-z1,m24D3ct-t0-z2,m exp-z2,m24D3ct-t0,
μa=3.09tmax-1.57tct2-tmax2,
χ2=i=1NTα, xi-ei2/σi2,

Metrics