Abstract

A detailed investigation of the use of time-resolved trasmittance for the optical characterization of scattering media by use of different analytical solutions to the diffusion equation has been performed. A femtosecond Ti:sapphire laser working at 800 nm and a streak camera with a time resolution of a few picoseconds were employed. Different latex and Intralipid solutions as well as biological samples were investigated. Reduced scattering coefficients were evaluated, and good agreement with the Mie predictions was found. An estimation of the order of magnitude of the absorption coefficient was obtained for the low-absorbance samples examined. These studies confirm experimentally that time-resolved trasmittance can be employed usefully for evaluating μs′ values of thick scattering samples when a proper theoretical description that takes into account realistic boundary conditions is used.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription