Abstract

A method of stabilizing a dual-output rotational shearing inteferometer to the nanometer-level accuracy required for deep starlight nulling in planet searches is presented. In this approach one of the nulling beam combiner’s two balanced outputs is used to control the other through a combination of external and internal path-length offsets. The path-length offsets sum to zero for the nulling output and to λ/4 for the control, or the quadrature, output. In the quadrature output a 1-nm path-length error corresponds to a 1% output-power variation, thus allowing subnanometer control.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometer,” Nature 274, 780–781 (1978).
    [CrossRef]
  2. M. Shao, M. M. Colavita, “Long-baseline optical and infrared stellar interferometry,” Ann. Rev. Astron. Astrophys. 30, 457–498 (1992).
    [CrossRef]
  3. N. Woolf, J. R. Angel “Astronomical searches for Earth-like planets and signs of life,” Ann. Rev. Astron. Astrophys. 36, 507–537 (1998).
    [CrossRef]
  4. C. A. Beichman, “A roadmap for the exploration of neighboring planetary systems,” (Jet Propulsion Laboratory, Pasadena, Calif., 1996).
  5. M. Shao, “Hubble extra solar planet interferometer,” in Space Astronomical Telescopes and Instrumentation, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE1494, 347–352 (1991).
    [CrossRef]
  6. D. J. Diner, E. F. Tubbs, S. L. Gaiser, R. P. Korechoff, “Infrared imaging of extrasolar planets,” J. Br. Interplanetary Soc. 44, 505–512 (1991).
  7. P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebolo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, 1998), pp. 254–261.

1998

N. Woolf, J. R. Angel “Astronomical searches for Earth-like planets and signs of life,” Ann. Rev. Astron. Astrophys. 36, 507–537 (1998).
[CrossRef]

1992

M. Shao, M. M. Colavita, “Long-baseline optical and infrared stellar interferometry,” Ann. Rev. Astron. Astrophys. 30, 457–498 (1992).
[CrossRef]

1991

D. J. Diner, E. F. Tubbs, S. L. Gaiser, R. P. Korechoff, “Infrared imaging of extrasolar planets,” J. Br. Interplanetary Soc. 44, 505–512 (1991).

1978

R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometer,” Nature 274, 780–781 (1978).
[CrossRef]

Angel, J. R.

N. Woolf, J. R. Angel “Astronomical searches for Earth-like planets and signs of life,” Ann. Rev. Astron. Astrophys. 36, 507–537 (1998).
[CrossRef]

Baudoz, P.

P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebolo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, 1998), pp. 254–261.

Beichman, C. A.

C. A. Beichman, “A roadmap for the exploration of neighboring planetary systems,” (Jet Propulsion Laboratory, Pasadena, Calif., 1996).

Bracewell, R. N.

R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometer,” Nature 274, 780–781 (1978).
[CrossRef]

Colavita, M. M.

M. Shao, M. M. Colavita, “Long-baseline optical and infrared stellar interferometry,” Ann. Rev. Astron. Astrophys. 30, 457–498 (1992).
[CrossRef]

Diner, D. J.

D. J. Diner, E. F. Tubbs, S. L. Gaiser, R. P. Korechoff, “Infrared imaging of extrasolar planets,” J. Br. Interplanetary Soc. 44, 505–512 (1991).

Gaiser, S. L.

D. J. Diner, E. F. Tubbs, S. L. Gaiser, R. P. Korechoff, “Infrared imaging of extrasolar planets,” J. Br. Interplanetary Soc. 44, 505–512 (1991).

Gay, J.

P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebolo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, 1998), pp. 254–261.

Korechoff, R. P.

D. J. Diner, E. F. Tubbs, S. L. Gaiser, R. P. Korechoff, “Infrared imaging of extrasolar planets,” J. Br. Interplanetary Soc. 44, 505–512 (1991).

Rabbia, Y.

P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebolo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, 1998), pp. 254–261.

Shao, M.

M. Shao, M. M. Colavita, “Long-baseline optical and infrared stellar interferometry,” Ann. Rev. Astron. Astrophys. 30, 457–498 (1992).
[CrossRef]

M. Shao, “Hubble extra solar planet interferometer,” in Space Astronomical Telescopes and Instrumentation, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE1494, 347–352 (1991).
[CrossRef]

Tubbs, E. F.

D. J. Diner, E. F. Tubbs, S. L. Gaiser, R. P. Korechoff, “Infrared imaging of extrasolar planets,” J. Br. Interplanetary Soc. 44, 505–512 (1991).

Woolf, N.

N. Woolf, J. R. Angel “Astronomical searches for Earth-like planets and signs of life,” Ann. Rev. Astron. Astrophys. 36, 507–537 (1998).
[CrossRef]

Ann. Rev. Astron. Astrophys.

M. Shao, M. M. Colavita, “Long-baseline optical and infrared stellar interferometry,” Ann. Rev. Astron. Astrophys. 30, 457–498 (1992).
[CrossRef]

N. Woolf, J. R. Angel “Astronomical searches for Earth-like planets and signs of life,” Ann. Rev. Astron. Astrophys. 36, 507–537 (1998).
[CrossRef]

J. Br. Interplanetary Soc.

D. J. Diner, E. F. Tubbs, S. L. Gaiser, R. P. Korechoff, “Infrared imaging of extrasolar planets,” J. Br. Interplanetary Soc. 44, 505–512 (1991).

Nature

R. N. Bracewell, “Detecting nonsolar planets by spinning infrared interferometer,” Nature 274, 780–781 (1978).
[CrossRef]

Other

P. Baudoz, J. Gay, Y. Rabbia, “Interfero-coronagraphy: a tool for detection of faint companions,” in Vol. 134 of the ASP Conference Series, Brown Dwarfs and Extrasolar Planets, R. Rebolo, E. L. Martin, M. R. Zapatero Osorio, eds. (Astronomical Society of the Pacific, San Francisco, 1998), pp. 254–261.

C. A. Beichman, “A roadmap for the exploration of neighboring planetary systems,” (Jet Propulsion Laboratory, Pasadena, Calif., 1996).

M. Shao, “Hubble extra solar planet interferometer,” in Space Astronomical Telescopes and Instrumentation, P. Y. Bely, J. B. Breckinridge, eds., Proc. SPIE1494, 347–352 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic layout of the beam paths in a rooftop-based RSI. As a result of the double-pass beam splitter, the two input beams to be combined (red and blue) yield four output beams, two of which (black) are nulled at zero optical path difference and two of which add constructively (violet).

Fig. 2
Fig. 2

Intensity at the nulling outputs versus the relative phase delay between the two inputs. The effect of an internal path-length offset (obtained by the translation of either rooftop mirror along the propagation direction) is opposite in the two outputs. For example, translating rooftop 1 (see Fig. 1) away from the beam splitter delays input 1 relative to input 2 in the left-hand nulling output and simultaneously delays input 2 relative to input 1 in the right-hand nulling output. In contrast, an external path delay in, e.g., input 1, affects both nulling outputs in the same sense (input 1 is delayed in both outputs). Combining equal internal and external path-length offsets of a magnitude of λ/8 then sets one of these outputs on null and the second off null by λ/4. OUT1, OUT2: output beams 1 and 2, respectively.

Fig. 3
Fig. 3

Metrology scheme for monitoring internal path-length fluctuations in the NBC. The metrology beam (red) is injected down the axis defined by the virtual intersection of the rooftop joints (and lies in the plane of the figure). Each metrology beam path includes one of two orthogonal linear polarizers. The starlight beams to be combined are shown in blue and green. The solid starlight beams lie in front of the plane of the figure, and the dashed beams lie behind it.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PoutPin=121-cos ϕ,
PoutPin=ϕ22.
ΔPP=ϕ=2π Δxλm,

Metrics