Abstract

The Eyeglass is a very large aperture (25–100-m) space telescope consisting of two distinct spacecraft, separated in space by several kilometers. A diffractive lens provides the telescope’s large aperture, and a separate, much smaller, space telescope serves as its mobile eyepiece. Use of a transmissive diffractive lens solves two basic problems associated with very large aperture space telescopes; it is inherently launchable (lightweight, packagable, and deployable) it and virtually eliminates the traditional, very tight surface shape tolerances faced by reflecting apertures. The potential drawback to use of a diffractive primary (very narrow spectral bandwidth) is eliminated by corrective optics in the telescope’s eyepiece; the Eyeglass can provide diffraction-limited imaging with either single-band (Δλ/λ ∼ 0.1), multiband, or continuous spectral coverage.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Forward, “Roundtrip interstellar travel using laser-pushed lightsails,” J. Spacecr. Rockets 21, 187–195 (1984).
    [CrossRef]
  2. R. E. Hufnagel, “Achromatic holographic optical system,” U.S. patent4,550,973 (5November1985).
  3. T. R. O’Meara, viewgraphs produced for an internal presentation on “Gossamer optics,” Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu, Calif. 90265.
  4. H. L. Mayer, “Structures matching the space environment: bridges or spider webs,” in Advances in the Astronautical Sciences (Univelt Inc., San Diego, Calif., 1980), Vol. 44, pp. 511–527.
  5. Y. M. Chesnokov, A. S. Vasileisky, “Space-based very high resolution telescope based on amplitude zoned plate,” presented at the International Conference on Space Optics, Toulouse Labege, France, 2–4 December 1997.
  6. I am preparing a manuscript to be called “Eyeglass. 2. Optical design of very large aperture diffractive telescopes.”
  7. I am preparing a manuscript to be called “Eyeglass. 3. In-space implementation of very large aperture diffractive telescopes.”
  8. S. Bennett, “Achromatic combinations of hologram optical elements,” Appl. Opt. 15, 542–545 (1976).
    [CrossRef] [PubMed]
  9. D. Faklis, G. M. Morris, “Broadband imaging with holographic lenses,” Opt. Eng. 28, 592–598 (1989).
    [CrossRef]
  10. R. H. Katyl, “Compensating optical systems. Part 1: Broadband holographic reconstruction,” Appl. Opt. 11, 1241–1247 (1972).
    [CrossRef] [PubMed]
  11. J. Latta, “Analysis of multiple hologram optical elements with low dispersion and low aberrations,” Appl. Opt. 11, 1686–1696 (1972).
    [CrossRef] [PubMed]
  12. W. Sweatt, “Achromatic triplet using holographic optical elements,” Appl. Opt. 16, 1390–1391 (1977).
    [CrossRef] [PubMed]
  13. L. Schupmann, Die Medial Fernrohre: Eine neue Konstruktion fur grosse astronomische Instrumente (B. G. Teubner, Leipzig, 1899).
  14. D. J. Schroeder, Astronomical Optics (Academic, San Diego, Calif., 1987), pp. 77–81.
  15. N. M. Ceglio, A. M. Hawryluk, D. P. Gaines, R. A. London, L. G. Seppala, “Broadband diffractive lens,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1991).
  16. L. Seppala, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, Calif. 94550, pointed out that dispersion in the Fresnel Corrector can, by use of the Schupmann principle, compensate for that in the Magnifying Glass (personal communication, 1999.
  17. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
    [CrossRef]
  18. R. A. Hyde, “Eyeglass, a large aperture space telescope,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1996).
  19. R. A. Hyde, “Large aperture Fresnel telescopes,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1998).
  20. T. Matsuura, N. Yamada, S. Nishi, Y. Hasuda, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides,” Macromolecules 26, 419–423 (1993).
    [CrossRef]

1993

T. Matsuura, N. Yamada, S. Nishi, Y. Hasuda, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides,” Macromolecules 26, 419–423 (1993).
[CrossRef]

1989

D. Faklis, G. M. Morris, “Broadband imaging with holographic lenses,” Opt. Eng. 28, 592–598 (1989).
[CrossRef]

1984

R. L. Forward, “Roundtrip interstellar travel using laser-pushed lightsails,” J. Spacecr. Rockets 21, 187–195 (1984).
[CrossRef]

1977

1976

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

S. Bennett, “Achromatic combinations of hologram optical elements,” Appl. Opt. 15, 542–545 (1976).
[CrossRef] [PubMed]

1972

Bennett, S.

Ceglio, N. M.

N. M. Ceglio, A. M. Hawryluk, D. P. Gaines, R. A. London, L. G. Seppala, “Broadband diffractive lens,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1991).

Chesnokov, Y. M.

Y. M. Chesnokov, A. S. Vasileisky, “Space-based very high resolution telescope based on amplitude zoned plate,” presented at the International Conference on Space Optics, Toulouse Labege, France, 2–4 December 1997.

Faklis, D.

D. Faklis, G. M. Morris, “Broadband imaging with holographic lenses,” Opt. Eng. 28, 592–598 (1989).
[CrossRef]

Feit, M. D.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Fleck, J. A.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Forward, R. L.

R. L. Forward, “Roundtrip interstellar travel using laser-pushed lightsails,” J. Spacecr. Rockets 21, 187–195 (1984).
[CrossRef]

Gaines, D. P.

N. M. Ceglio, A. M. Hawryluk, D. P. Gaines, R. A. London, L. G. Seppala, “Broadband diffractive lens,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1991).

Hasuda, Y.

T. Matsuura, N. Yamada, S. Nishi, Y. Hasuda, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides,” Macromolecules 26, 419–423 (1993).
[CrossRef]

Hawryluk, A. M.

N. M. Ceglio, A. M. Hawryluk, D. P. Gaines, R. A. London, L. G. Seppala, “Broadband diffractive lens,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1991).

Hufnagel, R. E.

R. E. Hufnagel, “Achromatic holographic optical system,” U.S. patent4,550,973 (5November1985).

Hyde, R. A.

R. A. Hyde, “Eyeglass, a large aperture space telescope,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1996).

R. A. Hyde, “Large aperture Fresnel telescopes,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1998).

Katyl, R. H.

Latta, J.

London, R. A.

N. M. Ceglio, A. M. Hawryluk, D. P. Gaines, R. A. London, L. G. Seppala, “Broadband diffractive lens,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1991).

Matsuura, T.

T. Matsuura, N. Yamada, S. Nishi, Y. Hasuda, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides,” Macromolecules 26, 419–423 (1993).
[CrossRef]

Mayer, H. L.

H. L. Mayer, “Structures matching the space environment: bridges or spider webs,” in Advances in the Astronautical Sciences (Univelt Inc., San Diego, Calif., 1980), Vol. 44, pp. 511–527.

Morris, G. M.

D. Faklis, G. M. Morris, “Broadband imaging with holographic lenses,” Opt. Eng. 28, 592–598 (1989).
[CrossRef]

Morris, J. R.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

Nishi, S.

T. Matsuura, N. Yamada, S. Nishi, Y. Hasuda, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides,” Macromolecules 26, 419–423 (1993).
[CrossRef]

Schroeder, D. J.

D. J. Schroeder, Astronomical Optics (Academic, San Diego, Calif., 1987), pp. 77–81.

Schupmann, L.

L. Schupmann, Die Medial Fernrohre: Eine neue Konstruktion fur grosse astronomische Instrumente (B. G. Teubner, Leipzig, 1899).

Seppala, L.

L. Seppala, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, Calif. 94550, pointed out that dispersion in the Fresnel Corrector can, by use of the Schupmann principle, compensate for that in the Magnifying Glass (personal communication, 1999.

Seppala, L. G.

N. M. Ceglio, A. M. Hawryluk, D. P. Gaines, R. A. London, L. G. Seppala, “Broadband diffractive lens,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1991).

Sweatt, W.

Vasileisky, A. S.

Y. M. Chesnokov, A. S. Vasileisky, “Space-based very high resolution telescope based on amplitude zoned plate,” presented at the International Conference on Space Optics, Toulouse Labege, France, 2–4 December 1997.

Yamada, N.

T. Matsuura, N. Yamada, S. Nishi, Y. Hasuda, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides,” Macromolecules 26, 419–423 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys.

J. A. Fleck, J. R. Morris, M. D. Feit, “Time-dependent propagation of high energy laser beams through the atmosphere,” Appl. Phys. 10, 129–160 (1976).
[CrossRef]

J. Spacecr. Rockets

R. L. Forward, “Roundtrip interstellar travel using laser-pushed lightsails,” J. Spacecr. Rockets 21, 187–195 (1984).
[CrossRef]

Macromolecules

T. Matsuura, N. Yamada, S. Nishi, Y. Hasuda, “Polyimides derived from 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl. 3. Property control for polymer blends and copolymerization of fluorinated polyimides,” Macromolecules 26, 419–423 (1993).
[CrossRef]

Opt. Eng.

D. Faklis, G. M. Morris, “Broadband imaging with holographic lenses,” Opt. Eng. 28, 592–598 (1989).
[CrossRef]

Other

R. A. Hyde, “Eyeglass, a large aperture space telescope,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1996).

R. A. Hyde, “Large aperture Fresnel telescopes,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1998).

R. E. Hufnagel, “Achromatic holographic optical system,” U.S. patent4,550,973 (5November1985).

T. R. O’Meara, viewgraphs produced for an internal presentation on “Gossamer optics,” Hughes Research Laboratories, 3011 Malibu Canyon Rd., Malibu, Calif. 90265.

H. L. Mayer, “Structures matching the space environment: bridges or spider webs,” in Advances in the Astronautical Sciences (Univelt Inc., San Diego, Calif., 1980), Vol. 44, pp. 511–527.

Y. M. Chesnokov, A. S. Vasileisky, “Space-based very high resolution telescope based on amplitude zoned plate,” presented at the International Conference on Space Optics, Toulouse Labege, France, 2–4 December 1997.

I am preparing a manuscript to be called “Eyeglass. 2. Optical design of very large aperture diffractive telescopes.”

I am preparing a manuscript to be called “Eyeglass. 3. In-space implementation of very large aperture diffractive telescopes.”

L. Schupmann, Die Medial Fernrohre: Eine neue Konstruktion fur grosse astronomische Instrumente (B. G. Teubner, Leipzig, 1899).

D. J. Schroeder, Astronomical Optics (Academic, San Diego, Calif., 1987), pp. 77–81.

N. M. Ceglio, A. M. Hawryluk, D. P. Gaines, R. A. London, L. G. Seppala, “Broadband diffractive lens,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1991).

L. Seppala, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, Calif. 94550, pointed out that dispersion in the Fresnel Corrector can, by use of the Schupmann principle, compensate for that in the Magnifying Glass (personal communication, 1999.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

In a Schupmann system, chromatically dispersed rays from sites on the Magnifying Glass are physically reconverged by imaging system Γ onto an inverse-power Fresnel corrector, which then chromatically recollimates the rays. The now achromatic ray bundles are focused by Π to form a real image.

Fig. 2
Fig. 2

Optical system in the Eyepiece vehicle starts with a two-element Ritchey–Chretien telescope that images the distant Magnifying Glass onto a Fresnel corrector. This hybrid element combines an inverse diffractive lens with a focusing reflector; it spectrally recombines the light and focuses it onto the image site.

Fig. 3
Fig. 3

Length of the Eyepiece optical system depends most critically on the aperture ratio η between the large Magnifying Glass and the smaller Fresnel corrector. Unless small, the sensor spacing ζ has little influence on system length.

Fig. 4
Fig. 4

Without chromatic correction, the large-aperture Magnifying Glass can deliver only high-resolution images for a microbandpass of Δλ/λ ∼ ±10-5.

Fig. 5
Fig. 5

Chromatic correction system incorporated in the Eyepiece vehicle enables diffraction-limited imaging over a Δλ/λ bandpass limited only by the aperture ratio between the Eyepiece and the Magnifying Glass. Outside of this spectral window, resolution gradually degrades as only light from the inner portion of the Magnifying Glass is collected.

Fig. 6
Fig. 6

Eyeglass delivers diffraction-limited resolution for a set of spectral windows centered on harmonics of its fundamental wavelength. Each window has the same Eyepiece aperture-limited, Δλ/λ, width; but for higher harmonics, the windows get closer together.

Fig. 7
Fig. 7

Eyeglass provides diffraction-limited resolution for all wavelengths below the λ+ value where the spectral windows start to overlap.

Fig. 8
Fig. 8

Material dispersion in the thick Magnifying Glass of a continuous-coverage Eyeglass can prevent chromatic correction for short wavelengths. This limitation is effectively removed by employing the same material dispersion in the Fresnel Corrector.

Equations (47)

Equations on this page are rendered with MathJax. Learn more.

Δλλ18N.
N=R22λf=D8λfnumber.
ΔλλfnumberλD.
xθs=Λ11Λ12Λ21Λ22x1θ1,
Λ11Λ12Λ21Λ22=1LM01Π11Π12Π21Π2210-pNμ1×Γ11Γ12Γ21Γ2210-p1μ1.
K11K12K21K22=10-pNμ1Γ11Γ12Γ21Γ2210-p1μ1.
K11K12K21K22=Γ11-Γ12p1μΓ12Γ21-Γ22p1μ-Γ11pNμ+Γ12p1μpNμΓ22-Γ12pNμ.
Γ12=0.
K11K12K21K22=Γ110Γ21-Γ22p1μ-Γ11pNμΓ22.
pNμ=-Γ22Γ11 p1μ+Γ21-K21Γ11.
Γ11-η.
Γ22=1Γ11=-1η.
pNμ=-1η2 p1μ.
K11K12K21K22=-η0Γ21-1η.
p1μ=p1μ, pNμ=-p1η2 μ.
FN=η2F1.
fFC=ηfMG.
L2=ηL1.
L2=fFCDMG.
Γ11Γ12Γ21Γ22=1L30110-p311L20110-p21×1L101.
p1μ=μL1,
p2μ=1L1+1L2-L3ηL1L2,
p3μ=1L2+1L3-ηL1L2L3,
p4μ=1L3+1L4-L2ηL1L3+1η2L1+1η2L0-μη2L1,
-αΔλλα.
D2=αDMG,
D3=1fMGL2+αη L3,
D4=ηDMG.
AT=AT2+AT3-32ηL1L2L3 AC2-32L2L3ηL1 AC3=-q48.
q4=41L1-1L2+1L3+2L2ηL1L3+L3ηL1-3L2L1L3η+1η.
1L4=4L1-4L2+3L3+2L2ηL1L3+L3ηL1-L2L1L33η+2η+1η21L0-1L1.
4L1  3ηL2L1L3  1η2L0,
1L4-4L2+3L3+2ηL1L2L3-2L2ηL1L3+2L3ηL1L2-1η2L1.
L4ζL3, L3γL2, κηL1L2,
4κ=4γ-3+ζ-1+4γ-3+ζ-12+8γη+2-2γ21/2.
Leye=L2 maxγ, 1=ηL1κ maxγ, 1.
4κ=1+ζ-1+1+ζ-12+8η1/2,
Leye=ηL1κ, so Leyeη3/2L1.
ds=2.44 λDMG F=2.44λfMG.
F=|Λ12|=LMη
ds=2.44 λDMG F=2.44λfMGζγκ.
1-αλ·K-1+αλ·K+1<0.
2K+1>1α.
λ·=K1+α λ+.
λ·=K2K+12K+1 λ+.
gx, z=1λz-D/2D/2 τuexpi πλzu-x2gu, 0du,
nλ=1.5+0.01λ2.

Metrics