Abstract

Optical coatings are designed and produced for the Infrared Atmospheric Sounding Interferometer meteorological space instrument operating in the spectral range 3.5–15.5 µm. First we discuss the choice of substrates and determine the complex refractive indices of thin-film materials. Then several theoretical solutions are studied for optimizing the efficiency of the instrument. To allow us to study the feasibility of the coatings, a specific mid-infrared optical monitoring system has been developed. This system is validated by the successful manufacture of two-cavity Fabry–Perot filters.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Hebert, G. Chalon, D. Blonde, F. Bourcier, C. Buil, “Maquette IASI: un outil de validation et d’expertise,” in International Conference on Space Optics, ICSO’97 (Centre National d’Etudes Spatiales, Toulouse, 1997), n.p.
  2. F. Lemarquis, G. Marchand, C. Amra, “Design and manufacture of low-absorption ZnS–YF3 antireflection coatings in the 3.5–16-µm spectral range,” Appl. Opt. 37, 4239–4244 (1998).
    [CrossRef]
  3. J. S. Browder, S. S. Ballard, P. Klocek, “Physical properties of crystalline infrared optical materials,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991), pp. 262, 315, 402.
  4. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
    [CrossRef]
  5. F. Lemarquis, E. Pelletier, “Buffer layers for the design of broadband optical filters,” Appl. Opt. 34, 5665–5672 (1995).
    [CrossRef] [PubMed]
  6. A. Thelen, “Design of a hot mirror: contest results,” Appl. Opt. 35, 4966–4977 (1996).
    [CrossRef] [PubMed]
  7. C. S. Evans, R. Hunnemen, J. S. Seeley, A. Whatley, “Filters for ν2 band of CO2: monitoring and control of layer deposition,” Appl. Opt. 15, 2736–2745 (1976).
    [CrossRef] [PubMed]
  8. J. S. Seeley, R. Hunneman, A. Whatley, “Far infrared filters for the Galileo-Jupiter and other missions,” Appl. Opt. 20, 31–39 (1981).
    [CrossRef] [PubMed]

1998 (1)

1996 (1)

1995 (1)

1983 (1)

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

1981 (1)

1976 (1)

Amra, C.

Ballard, S. S.

J. S. Browder, S. S. Ballard, P. Klocek, “Physical properties of crystalline infrared optical materials,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991), pp. 262, 315, 402.

Blonde, D.

P. J. Hebert, G. Chalon, D. Blonde, F. Bourcier, C. Buil, “Maquette IASI: un outil de validation et d’expertise,” in International Conference on Space Optics, ICSO’97 (Centre National d’Etudes Spatiales, Toulouse, 1997), n.p.

Borgogno, J. P.

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Bourcier, F.

P. J. Hebert, G. Chalon, D. Blonde, F. Bourcier, C. Buil, “Maquette IASI: un outil de validation et d’expertise,” in International Conference on Space Optics, ICSO’97 (Centre National d’Etudes Spatiales, Toulouse, 1997), n.p.

Browder, J. S.

J. S. Browder, S. S. Ballard, P. Klocek, “Physical properties of crystalline infrared optical materials,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991), pp. 262, 315, 402.

Buil, C.

P. J. Hebert, G. Chalon, D. Blonde, F. Bourcier, C. Buil, “Maquette IASI: un outil de validation et d’expertise,” in International Conference on Space Optics, ICSO’97 (Centre National d’Etudes Spatiales, Toulouse, 1997), n.p.

Chalon, G.

P. J. Hebert, G. Chalon, D. Blonde, F. Bourcier, C. Buil, “Maquette IASI: un outil de validation et d’expertise,” in International Conference on Space Optics, ICSO’97 (Centre National d’Etudes Spatiales, Toulouse, 1997), n.p.

Evans, C. S.

Hebert, P. J.

P. J. Hebert, G. Chalon, D. Blonde, F. Bourcier, C. Buil, “Maquette IASI: un outil de validation et d’expertise,” in International Conference on Space Optics, ICSO’97 (Centre National d’Etudes Spatiales, Toulouse, 1997), n.p.

Hunneman, R.

Hunnemen, R.

Klocek, P.

J. S. Browder, S. S. Ballard, P. Klocek, “Physical properties of crystalline infrared optical materials,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991), pp. 262, 315, 402.

Lazarides, B.

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Lemarquis, F.

Marchand, G.

Pelletier, E.

F. Lemarquis, E. Pelletier, “Buffer layers for the design of broadband optical filters,” Appl. Opt. 34, 5665–5672 (1995).
[CrossRef] [PubMed]

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Seeley, J. S.

Thelen, A.

Whatley, A.

Appl. Opt. (5)

Thin Solid Films (1)

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic determination of the optical constants of inhomogeneous thin films,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Other (2)

P. J. Hebert, G. Chalon, D. Blonde, F. Bourcier, C. Buil, “Maquette IASI: un outil de validation et d’expertise,” in International Conference on Space Optics, ICSO’97 (Centre National d’Etudes Spatiales, Toulouse, 1997), n.p.

J. S. Browder, S. S. Ballard, P. Klocek, “Physical properties of crystalline infrared optical materials,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991), pp. 262, 315, 402.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of the I.A.S.I. meteorological instrument.

Fig. 2
Fig. 2

Optical constants of Ge deposited in a Balzers BAK 600 system (solid curve) and in the small vacuum chamber used for infrared applications (dotted curve); n and k, respectively, represent the refractive index and the extinction coefficient of the material.

Fig. 3
Fig. 3

Calculated optical properties of a beam-splitter coating made with ZnS and Ge deposited on a KBr substrate. This coating also plays the role of a beam splitter at 1.54 µm, with a slight absorption due to Ge. The angle of incidence is 30° in air; R P , R S , T P , and T S represent the reflectance and the transmittance for P and S states of polarization, respectively.

Fig. 4
Fig. 4

Measured optical properties at normal incidence of a beam-splitter sample with a KBr substrate. The two faces of the substrate are covered with a protective layer. The beam-splitter coating is deposited on top of one protective layer. T, transmittance; R, reflectance.

Fig. 5
Fig. 5

Measured optical properties at normal incidence of the antireflection coating designed for the microlens corresponding to channel B3. These measurements were obtained on a flat test piece.

Fig. 6
Fig. 6

Comparison of the calculated optical properties of the short-wavelength pass filter (new solution) and the long-wavelength pass filter solutions (initial solution) for the second dichroic plate (incidence 30° in air, state of polarization p). The calculation corresponds to the case of a Ge substrate. Similar results can be obtained with ZnSe substrates. The new solution is much more efficient for longer wavelength in the spectral range of B1. At wavelength 15.5 µm, the improvement is ∼15%.

Fig. 7
Fig. 7

Calculated optical properties of the dichroic coating for the first plate (incidence 30° in the air, state of polarization p). The calculation corresponds to the case of a ZnSe substrate.

Fig. 8
Fig. 8

Calculated optical properties of the dichroic coating for the second plate (incidence 30° in the air, state of polarization p). The calculation corresponds to the case of a ZeSe substrate.

Fig. 9
Fig. 9

Schematic representation of the vacuum chamber equipped with its optical monitoring system. The spectrophotometer is also used for the transmittance and reflectance measurement of optical components.

Fig. 10
Fig. 10

Comparison of the measured and the calculated properties for a two-cavity Fabry–Perot filter. The deposition was controlled with the optical monitoring system at wavelength 5 µm. The measured absorption is higher than predicted.

Tables (1)

Tables Icon

Table 1 List of the Optical Coatings Required for the I.A.S.I. Instrumenta

Metrics