Abstract

We demonstrate a new design for a light-scattering microscope that is convenient to use and that allows simultaneous imaging and light scattering. The design is motivated by the growing use of thermal fluctuations to probe the viscoelastic properties of complex inhomogeneous environments. We demonstrate measurements of an optically nonergodic sample, one of the most challenging light-scattering applications.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
    [CrossRef] [PubMed]
  2. W. van Megen, S. M. Underwood, P. N. Pusey, “Nonergodicity parameters of colloidal glasses,” Phys. Rev. Lett. 67, 1586–1589 (1991).
    [CrossRef] [PubMed]
  3. J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, P. M. Chaikin, “Nonergodicity and light scattering from polymer gels,” Phys. Rev. A 46, 6550–6563 (1992).
    [CrossRef] [PubMed]
  4. J. G. H. Joosten, E. T. F. Gelade, P. N. Pusey, “Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels,” Phys. Rev. A 42, 2161–2175 (1990).
    [CrossRef] [PubMed]
  5. S. M. Block, K. Svoboda, “Analysis of high resolution recordings of motor movement,” Biophys. J. 68, 230–241 (1995).
  6. J. Gelles, B. J. Schnapp, M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature (London) 331, 450–453 (1988).
    [CrossRef]
  7. M. P. Sheetz, S. C. Kuo, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
    [CrossRef] [PubMed]
  8. T. G. Mason, K. Ganesan, J. H. v. Zanten, D. Wirtz, S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997).
    [CrossRef]
  9. I. Nishio, T. Tanaka, S.-T. Sun, Y. Imanishi, S. T. Ohnishi, “Hemoglobin aggregation in single red blood cells of sickle cell anemia,” Science 220, 1173–1174 (1983).
    [CrossRef] [PubMed]
  10. T. Nishizaki, T. Yagi, Y. Tanaka, S. Ishiwata, “Right-handed rotation of an actin filament in an in vitro motile system,” Nature (London) 361, 269–271 (1993).
    [CrossRef]
  11. H. Tanaka, T. Miura, K. Takagi, T. Nishi, “Critical behavior of complex shear modulus in concentrated polymer solutions and gels,” Proc. IEEE 3, 1325–1328 (1990).
  12. P. S. Blank, R. B. Tishler, F. D. Carlson, “Quasielastic light scattering microscope spectrometer,” Appl. Opt. 26, 351–356 (1987).
    [CrossRef] [PubMed]
  13. I. Nishio, J. Peetermans, T. Tanaka, “Microscope laser light scattering spectroscopy of single biological cells,” Cell Biophys. 7, 91–105 (1985).
    [CrossRef] [PubMed]
  14. J. A. Peetermans, E. K. Matthews, I. Nishio, T. Tanaka, “Particle motion in single acinar cells observed by microscope laser light scattering spectroscopy,” Eur. Biophys. J. 15, 65–69 (1987).
    [CrossRef] [PubMed]
  15. R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S. A. Safran, “Localized dynamic light scattering: probing single particle dynamics at the nanoscale,” Phys. Rev. Lett. 78, 154–157 (1997).
    [CrossRef]
  16. T. Maeda, S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567 (1972).
    [CrossRef]
  17. N. A. Clark, J. H. Lunacek, G. B. Benedek, “A study of Brownian motion using light scattering,” Am. J. Phys. 38, 575–585 (1970).
    [CrossRef]
  18. H. Gang, A. Krall, H. Cummins, D. Weitz, “Emulsion glasses: a dynamic light-scattering study,” Phys. Rev. E 59, 715–721 part B, (1999).
  19. P. D. Kaplan, J. L. Crocker (Dept. of Physics and Astronomy, Univ. of Pennsylvania), M. Valentine (Dept. of Physics and Astronomy, Univ. of Pennsylvania), D. Thota (California Institute of Technology), and D. A. Weitz, are preparing a manuscript to be called “Fluctuations at the length scale of structural heterogeneity.”
  20. P. N. Pusey, “Number fluctuations of interacting particles,” J. Phy. A 12, 1805–1818 (1979).
    [CrossRef]

1999

H. Gang, A. Krall, H. Cummins, D. Weitz, “Emulsion glasses: a dynamic light-scattering study,” Phys. Rev. E 59, 715–721 part B, (1999).

1997

T. G. Mason, K. Ganesan, J. H. v. Zanten, D. Wirtz, S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997).
[CrossRef]

R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S. A. Safran, “Localized dynamic light scattering: probing single particle dynamics at the nanoscale,” Phys. Rev. Lett. 78, 154–157 (1997).
[CrossRef]

1995

S. M. Block, K. Svoboda, “Analysis of high resolution recordings of motor movement,” Biophys. J. 68, 230–241 (1995).

T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
[CrossRef] [PubMed]

1993

M. P. Sheetz, S. C. Kuo, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

T. Nishizaki, T. Yagi, Y. Tanaka, S. Ishiwata, “Right-handed rotation of an actin filament in an in vitro motile system,” Nature (London) 361, 269–271 (1993).
[CrossRef]

1992

J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, P. M. Chaikin, “Nonergodicity and light scattering from polymer gels,” Phys. Rev. A 46, 6550–6563 (1992).
[CrossRef] [PubMed]

1991

W. van Megen, S. M. Underwood, P. N. Pusey, “Nonergodicity parameters of colloidal glasses,” Phys. Rev. Lett. 67, 1586–1589 (1991).
[CrossRef] [PubMed]

1990

J. G. H. Joosten, E. T. F. Gelade, P. N. Pusey, “Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels,” Phys. Rev. A 42, 2161–2175 (1990).
[CrossRef] [PubMed]

H. Tanaka, T. Miura, K. Takagi, T. Nishi, “Critical behavior of complex shear modulus in concentrated polymer solutions and gels,” Proc. IEEE 3, 1325–1328 (1990).

1988

J. Gelles, B. J. Schnapp, M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature (London) 331, 450–453 (1988).
[CrossRef]

1987

P. S. Blank, R. B. Tishler, F. D. Carlson, “Quasielastic light scattering microscope spectrometer,” Appl. Opt. 26, 351–356 (1987).
[CrossRef] [PubMed]

J. A. Peetermans, E. K. Matthews, I. Nishio, T. Tanaka, “Particle motion in single acinar cells observed by microscope laser light scattering spectroscopy,” Eur. Biophys. J. 15, 65–69 (1987).
[CrossRef] [PubMed]

1985

I. Nishio, J. Peetermans, T. Tanaka, “Microscope laser light scattering spectroscopy of single biological cells,” Cell Biophys. 7, 91–105 (1985).
[CrossRef] [PubMed]

1983

I. Nishio, T. Tanaka, S.-T. Sun, Y. Imanishi, S. T. Ohnishi, “Hemoglobin aggregation in single red blood cells of sickle cell anemia,” Science 220, 1173–1174 (1983).
[CrossRef] [PubMed]

1979

P. N. Pusey, “Number fluctuations of interacting particles,” J. Phy. A 12, 1805–1818 (1979).
[CrossRef]

1972

T. Maeda, S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567 (1972).
[CrossRef]

1970

N. A. Clark, J. H. Lunacek, G. B. Benedek, “A study of Brownian motion using light scattering,” Am. J. Phys. 38, 575–585 (1970).
[CrossRef]

Bar-Ziv, R.

R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S. A. Safran, “Localized dynamic light scattering: probing single particle dynamics at the nanoscale,” Phys. Rev. Lett. 78, 154–157 (1997).
[CrossRef]

Benedek, G. B.

N. A. Clark, J. H. Lunacek, G. B. Benedek, “A study of Brownian motion using light scattering,” Am. J. Phys. 38, 575–585 (1970).
[CrossRef]

Blank, P. S.

Block, S. M.

S. M. Block, K. Svoboda, “Analysis of high resolution recordings of motor movement,” Biophys. J. 68, 230–241 (1995).

Carlson, F. D.

Chaikin, P. M.

J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, P. M. Chaikin, “Nonergodicity and light scattering from polymer gels,” Phys. Rev. A 46, 6550–6563 (1992).
[CrossRef] [PubMed]

Clark, N. A.

N. A. Clark, J. H. Lunacek, G. B. Benedek, “A study of Brownian motion using light scattering,” Am. J. Phys. 38, 575–585 (1970).
[CrossRef]

Crocker, J. L.

P. D. Kaplan, J. L. Crocker (Dept. of Physics and Astronomy, Univ. of Pennsylvania), M. Valentine (Dept. of Physics and Astronomy, Univ. of Pennsylvania), D. Thota (California Institute of Technology), and D. A. Weitz, are preparing a manuscript to be called “Fluctuations at the length scale of structural heterogeneity.”

Cummins, H.

H. Gang, A. Krall, H. Cummins, D. Weitz, “Emulsion glasses: a dynamic light-scattering study,” Phys. Rev. E 59, 715–721 part B, (1999).

Fujime, S.

T. Maeda, S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567 (1972).
[CrossRef]

Ganesan, K.

T. G. Mason, K. Ganesan, J. H. v. Zanten, D. Wirtz, S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997).
[CrossRef]

Gang, H.

H. Gang, A. Krall, H. Cummins, D. Weitz, “Emulsion glasses: a dynamic light-scattering study,” Phys. Rev. E 59, 715–721 part B, (1999).

Gelade, E. T. F.

J. G. H. Joosten, E. T. F. Gelade, P. N. Pusey, “Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels,” Phys. Rev. A 42, 2161–2175 (1990).
[CrossRef] [PubMed]

Gelles, J.

J. Gelles, B. J. Schnapp, M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature (London) 331, 450–453 (1988).
[CrossRef]

Imanishi, Y.

I. Nishio, T. Tanaka, S.-T. Sun, Y. Imanishi, S. T. Ohnishi, “Hemoglobin aggregation in single red blood cells of sickle cell anemia,” Science 220, 1173–1174 (1983).
[CrossRef] [PubMed]

Ishiwata, S.

T. Nishizaki, T. Yagi, Y. Tanaka, S. Ishiwata, “Right-handed rotation of an actin filament in an in vitro motile system,” Nature (London) 361, 269–271 (1993).
[CrossRef]

Joosten, J. G. H.

J. G. H. Joosten, E. T. F. Gelade, P. N. Pusey, “Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels,” Phys. Rev. A 42, 2161–2175 (1990).
[CrossRef] [PubMed]

Kaplan, P. D.

P. D. Kaplan, J. L. Crocker (Dept. of Physics and Astronomy, Univ. of Pennsylvania), M. Valentine (Dept. of Physics and Astronomy, Univ. of Pennsylvania), D. Thota (California Institute of Technology), and D. A. Weitz, are preparing a manuscript to be called “Fluctuations at the length scale of structural heterogeneity.”

Krall, A.

H. Gang, A. Krall, H. Cummins, D. Weitz, “Emulsion glasses: a dynamic light-scattering study,” Phys. Rev. E 59, 715–721 part B, (1999).

Kuo, S. C.

T. G. Mason, K. Ganesan, J. H. v. Zanten, D. Wirtz, S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997).
[CrossRef]

M. P. Sheetz, S. C. Kuo, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

Lunacek, J. H.

N. A. Clark, J. H. Lunacek, G. B. Benedek, “A study of Brownian motion using light scattering,” Am. J. Phys. 38, 575–585 (1970).
[CrossRef]

Maeda, T.

T. Maeda, S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567 (1972).
[CrossRef]

Mason, T. G.

T. G. Mason, K. Ganesan, J. H. v. Zanten, D. Wirtz, S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997).
[CrossRef]

T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
[CrossRef] [PubMed]

Matthews, E. K.

J. A. Peetermans, E. K. Matthews, I. Nishio, T. Tanaka, “Particle motion in single acinar cells observed by microscope laser light scattering spectroscopy,” Eur. Biophys. J. 15, 65–69 (1987).
[CrossRef] [PubMed]

Meller, A.

R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S. A. Safran, “Localized dynamic light scattering: probing single particle dynamics at the nanoscale,” Phys. Rev. Lett. 78, 154–157 (1997).
[CrossRef]

Milner, S. T.

J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, P. M. Chaikin, “Nonergodicity and light scattering from polymer gels,” Phys. Rev. A 46, 6550–6563 (1992).
[CrossRef] [PubMed]

Miura, T.

H. Tanaka, T. Miura, K. Takagi, T. Nishi, “Critical behavior of complex shear modulus in concentrated polymer solutions and gels,” Proc. IEEE 3, 1325–1328 (1990).

Moses, E.

R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S. A. Safran, “Localized dynamic light scattering: probing single particle dynamics at the nanoscale,” Phys. Rev. Lett. 78, 154–157 (1997).
[CrossRef]

Nishi, T.

H. Tanaka, T. Miura, K. Takagi, T. Nishi, “Critical behavior of complex shear modulus in concentrated polymer solutions and gels,” Proc. IEEE 3, 1325–1328 (1990).

Nishio, I.

J. A. Peetermans, E. K. Matthews, I. Nishio, T. Tanaka, “Particle motion in single acinar cells observed by microscope laser light scattering spectroscopy,” Eur. Biophys. J. 15, 65–69 (1987).
[CrossRef] [PubMed]

I. Nishio, J. Peetermans, T. Tanaka, “Microscope laser light scattering spectroscopy of single biological cells,” Cell Biophys. 7, 91–105 (1985).
[CrossRef] [PubMed]

I. Nishio, T. Tanaka, S.-T. Sun, Y. Imanishi, S. T. Ohnishi, “Hemoglobin aggregation in single red blood cells of sickle cell anemia,” Science 220, 1173–1174 (1983).
[CrossRef] [PubMed]

Nishizaki, T.

T. Nishizaki, T. Yagi, Y. Tanaka, S. Ishiwata, “Right-handed rotation of an actin filament in an in vitro motile system,” Nature (London) 361, 269–271 (1993).
[CrossRef]

Ohnishi, S. T.

I. Nishio, T. Tanaka, S.-T. Sun, Y. Imanishi, S. T. Ohnishi, “Hemoglobin aggregation in single red blood cells of sickle cell anemia,” Science 220, 1173–1174 (1983).
[CrossRef] [PubMed]

Peetermans, J.

I. Nishio, J. Peetermans, T. Tanaka, “Microscope laser light scattering spectroscopy of single biological cells,” Cell Biophys. 7, 91–105 (1985).
[CrossRef] [PubMed]

Peetermans, J. A.

J. A. Peetermans, E. K. Matthews, I. Nishio, T. Tanaka, “Particle motion in single acinar cells observed by microscope laser light scattering spectroscopy,” Eur. Biophys. J. 15, 65–69 (1987).
[CrossRef] [PubMed]

Pine, D. J.

J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, P. M. Chaikin, “Nonergodicity and light scattering from polymer gels,” Phys. Rev. A 46, 6550–6563 (1992).
[CrossRef] [PubMed]

Pusey, P. N.

W. van Megen, S. M. Underwood, P. N. Pusey, “Nonergodicity parameters of colloidal glasses,” Phys. Rev. Lett. 67, 1586–1589 (1991).
[CrossRef] [PubMed]

J. G. H. Joosten, E. T. F. Gelade, P. N. Pusey, “Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels,” Phys. Rev. A 42, 2161–2175 (1990).
[CrossRef] [PubMed]

P. N. Pusey, “Number fluctuations of interacting particles,” J. Phy. A 12, 1805–1818 (1979).
[CrossRef]

Safran, S. A.

R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S. A. Safran, “Localized dynamic light scattering: probing single particle dynamics at the nanoscale,” Phys. Rev. Lett. 78, 154–157 (1997).
[CrossRef]

Schnapp, B. J.

J. Gelles, B. J. Schnapp, M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature (London) 331, 450–453 (1988).
[CrossRef]

Sheetz, M. P.

M. P. Sheetz, S. C. Kuo, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

J. Gelles, B. J. Schnapp, M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature (London) 331, 450–453 (1988).
[CrossRef]

Stavans, J.

R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S. A. Safran, “Localized dynamic light scattering: probing single particle dynamics at the nanoscale,” Phys. Rev. Lett. 78, 154–157 (1997).
[CrossRef]

Sun, S.-T.

I. Nishio, T. Tanaka, S.-T. Sun, Y. Imanishi, S. T. Ohnishi, “Hemoglobin aggregation in single red blood cells of sickle cell anemia,” Science 220, 1173–1174 (1983).
[CrossRef] [PubMed]

Svoboda, K.

S. M. Block, K. Svoboda, “Analysis of high resolution recordings of motor movement,” Biophys. J. 68, 230–241 (1995).

Takagi, K.

H. Tanaka, T. Miura, K. Takagi, T. Nishi, “Critical behavior of complex shear modulus in concentrated polymer solutions and gels,” Proc. IEEE 3, 1325–1328 (1990).

Tanaka, H.

H. Tanaka, T. Miura, K. Takagi, T. Nishi, “Critical behavior of complex shear modulus in concentrated polymer solutions and gels,” Proc. IEEE 3, 1325–1328 (1990).

Tanaka, T.

J. A. Peetermans, E. K. Matthews, I. Nishio, T. Tanaka, “Particle motion in single acinar cells observed by microscope laser light scattering spectroscopy,” Eur. Biophys. J. 15, 65–69 (1987).
[CrossRef] [PubMed]

I. Nishio, J. Peetermans, T. Tanaka, “Microscope laser light scattering spectroscopy of single biological cells,” Cell Biophys. 7, 91–105 (1985).
[CrossRef] [PubMed]

I. Nishio, T. Tanaka, S.-T. Sun, Y. Imanishi, S. T. Ohnishi, “Hemoglobin aggregation in single red blood cells of sickle cell anemia,” Science 220, 1173–1174 (1983).
[CrossRef] [PubMed]

Tanaka, Y.

T. Nishizaki, T. Yagi, Y. Tanaka, S. Ishiwata, “Right-handed rotation of an actin filament in an in vitro motile system,” Nature (London) 361, 269–271 (1993).
[CrossRef]

Thota, D.

P. D. Kaplan, J. L. Crocker (Dept. of Physics and Astronomy, Univ. of Pennsylvania), M. Valentine (Dept. of Physics and Astronomy, Univ. of Pennsylvania), D. Thota (California Institute of Technology), and D. A. Weitz, are preparing a manuscript to be called “Fluctuations at the length scale of structural heterogeneity.”

Tishler, R. B.

Tlusty, T.

R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S. A. Safran, “Localized dynamic light scattering: probing single particle dynamics at the nanoscale,” Phys. Rev. Lett. 78, 154–157 (1997).
[CrossRef]

Underwood, S. M.

W. van Megen, S. M. Underwood, P. N. Pusey, “Nonergodicity parameters of colloidal glasses,” Phys. Rev. Lett. 67, 1586–1589 (1991).
[CrossRef] [PubMed]

Valentine, M.

P. D. Kaplan, J. L. Crocker (Dept. of Physics and Astronomy, Univ. of Pennsylvania), M. Valentine (Dept. of Physics and Astronomy, Univ. of Pennsylvania), D. Thota (California Institute of Technology), and D. A. Weitz, are preparing a manuscript to be called “Fluctuations at the length scale of structural heterogeneity.”

van Megen, W.

W. van Megen, S. M. Underwood, P. N. Pusey, “Nonergodicity parameters of colloidal glasses,” Phys. Rev. Lett. 67, 1586–1589 (1991).
[CrossRef] [PubMed]

Weitz, D.

H. Gang, A. Krall, H. Cummins, D. Weitz, “Emulsion glasses: a dynamic light-scattering study,” Phys. Rev. E 59, 715–721 part B, (1999).

Weitz, D. A.

T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
[CrossRef] [PubMed]

P. D. Kaplan, J. L. Crocker (Dept. of Physics and Astronomy, Univ. of Pennsylvania), M. Valentine (Dept. of Physics and Astronomy, Univ. of Pennsylvania), D. Thota (California Institute of Technology), and D. A. Weitz, are preparing a manuscript to be called “Fluctuations at the length scale of structural heterogeneity.”

Wirtz, D.

T. G. Mason, K. Ganesan, J. H. v. Zanten, D. Wirtz, S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997).
[CrossRef]

Wu, X. L.

J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, P. M. Chaikin, “Nonergodicity and light scattering from polymer gels,” Phys. Rev. A 46, 6550–6563 (1992).
[CrossRef] [PubMed]

Xue, J. Z.

J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, P. M. Chaikin, “Nonergodicity and light scattering from polymer gels,” Phys. Rev. A 46, 6550–6563 (1992).
[CrossRef] [PubMed]

Yagi, T.

T. Nishizaki, T. Yagi, Y. Tanaka, S. Ishiwata, “Right-handed rotation of an actin filament in an in vitro motile system,” Nature (London) 361, 269–271 (1993).
[CrossRef]

Zanten, J. H. v.

T. G. Mason, K. Ganesan, J. H. v. Zanten, D. Wirtz, S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997).
[CrossRef]

Am. J. Phys.

N. A. Clark, J. H. Lunacek, G. B. Benedek, “A study of Brownian motion using light scattering,” Am. J. Phys. 38, 575–585 (1970).
[CrossRef]

Appl. Opt.

Biophys. J.

S. M. Block, K. Svoboda, “Analysis of high resolution recordings of motor movement,” Biophys. J. 68, 230–241 (1995).

Cell Biophys.

I. Nishio, J. Peetermans, T. Tanaka, “Microscope laser light scattering spectroscopy of single biological cells,” Cell Biophys. 7, 91–105 (1985).
[CrossRef] [PubMed]

Eur. Biophys. J.

J. A. Peetermans, E. K. Matthews, I. Nishio, T. Tanaka, “Particle motion in single acinar cells observed by microscope laser light scattering spectroscopy,” Eur. Biophys. J. 15, 65–69 (1987).
[CrossRef] [PubMed]

J. Phy. A

P. N. Pusey, “Number fluctuations of interacting particles,” J. Phy. A 12, 1805–1818 (1979).
[CrossRef]

Nature (London)

T. Nishizaki, T. Yagi, Y. Tanaka, S. Ishiwata, “Right-handed rotation of an actin filament in an in vitro motile system,” Nature (London) 361, 269–271 (1993).
[CrossRef]

J. Gelles, B. J. Schnapp, M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature (London) 331, 450–453 (1988).
[CrossRef]

Phys. Rev. A

J. Z. Xue, D. J. Pine, S. T. Milner, X. L. Wu, P. M. Chaikin, “Nonergodicity and light scattering from polymer gels,” Phys. Rev. A 46, 6550–6563 (1992).
[CrossRef] [PubMed]

J. G. H. Joosten, E. T. F. Gelade, P. N. Pusey, “Dynamic light scattering by nonergodic media: Brownian particles trapped in polyacrylamide gels,” Phys. Rev. A 42, 2161–2175 (1990).
[CrossRef] [PubMed]

Phys. Rev. E

H. Gang, A. Krall, H. Cummins, D. Weitz, “Emulsion glasses: a dynamic light-scattering study,” Phys. Rev. E 59, 715–721 part B, (1999).

Phys. Rev. Lett.

R. Bar-Ziv, A. Meller, T. Tlusty, E. Moses, J. Stavans, S. A. Safran, “Localized dynamic light scattering: probing single particle dynamics at the nanoscale,” Phys. Rev. Lett. 78, 154–157 (1997).
[CrossRef]

T. G. Mason, D. A. Weitz, “Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250–1253 (1995).
[CrossRef] [PubMed]

W. van Megen, S. M. Underwood, P. N. Pusey, “Nonergodicity parameters of colloidal glasses,” Phys. Rev. Lett. 67, 1586–1589 (1991).
[CrossRef] [PubMed]

T. G. Mason, K. Ganesan, J. H. v. Zanten, D. Wirtz, S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282–3285 (1997).
[CrossRef]

Proc. IEEE

H. Tanaka, T. Miura, K. Takagi, T. Nishi, “Critical behavior of complex shear modulus in concentrated polymer solutions and gels,” Proc. IEEE 3, 1325–1328 (1990).

Rev. Sci. Instrum.

T. Maeda, S. Fujime, “Quasielastic light scattering under optical microscope,” Rev. Sci. Instrum. 43, 566–567 (1972).
[CrossRef]

Science

I. Nishio, T. Tanaka, S.-T. Sun, Y. Imanishi, S. T. Ohnishi, “Hemoglobin aggregation in single red blood cells of sickle cell anemia,” Science 220, 1173–1174 (1983).
[CrossRef] [PubMed]

M. P. Sheetz, S. C. Kuo, “Force of single kinesin molecules measured with optical tweezers,” Science 260, 232–234 (1993).
[CrossRef] [PubMed]

Other

P. D. Kaplan, J. L. Crocker (Dept. of Physics and Astronomy, Univ. of Pennsylvania), M. Valentine (Dept. of Physics and Astronomy, Univ. of Pennsylvania), D. Thota (California Institute of Technology), and D. A. Weitz, are preparing a manuscript to be called “Fluctuations at the length scale of structural heterogeneity.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Design of the DLS microscope. An Ar+-ion laser beam (514.5 nm) is delivered by an optical fiber, collimated, and then focused on the condenser aperture of a Leica Model DM IRB/E inverted microscope. The sample is first imaged, and then the condenser aligned for Köhler illumination. In Köhler illumination the condenser aperture is conjugate to the objective’s back focal plane (BFP). In this configuration, the laser beam is collimated in the sample plane (SP). The back focal plane of our 100×, 1.4 numerical aperture objective is imaged onto a translation stage that moves a single-mode fiber, varying the scattering vector that is collected. The collection fiber is split to two photomultipliers (Hammamatsu, Model H5783). The photomultiplier output is filtered by Brookhaven amplifier discriminators and then fed to a Model BI9000 correlator.

Fig. 2
Fig. 2

Here we can see the ability of the instrument to work at long times and large displacements by studying 0.5-µm spheres in a glycerol and water mixture. Note the excellent agreement between measurements at different angles and the agreement with the power law expected for purely diffusive motion. The lower figure displays the field correlation function (solid curve) taken from an average of 30, 11-s correlation functions and an exponential fit (dashed curve) taken at a scattering angle of 44.7°. The error bars (plotted at every fifth point) are statistical based on the variation between individual correlation functions.

Fig. 3
Fig. 3

Scattering data taken from a dense suspension of carbon-black particles in oil. By working with thin samples, light-scattering difficulties associated with absorption can be minimized and useful dynamic data can be obtained. Correlation function (solid curve) is an average of 20, 30-s correlation functions obtained from the same spot of one sample at a scattering angle of 44.7°. The dashed curve is an exponential fit that describes the diffusion of the particles fairly well. The error bars, plotted at every fifth data point, are statistical based on the variation between individual correlation functions.

Fig. 4
Fig. 4

A sample of agarose 0.48 wt. % (FMC, SeaKem) was prepared with 0.2 vol. % 0.46-µm-diameter polystyrene spheres (Seradyn) and stabilized by adding 0.025 wt. % Triton X-100. The failure of repeated measurements at a 28° scattering angle to show, even approximately, the same correlation function demonstrates the strongly nonergodic nature of the sample.

Fig. 5
Fig. 5

Data from Fig. 4 corrected using the procedure described in the text. (a) g 1(τ) and (b) resultant measure of particle displacement. Nonergodic samples are one of the most challenging applications of DLS.

Fig. 6
Fig. 6

Repeating the measurements and analysis of Figs. 5(a) and 5(b) at different angles shows that the inferred particle dynamics are independent of scattering angle between 20.8° and 55°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

g2τ=I0Iτ/I02.
g1τ=exp-q2Δr2τ/6,
ItIt+τI02|fθ|4N2=1+2Y1-Yg1τ+Y2g1τ2,

Metrics