Abstract

Water at the ice point makes a good calibration source in the 4- to 13-µm spectral region because of its high emissivity, small skin depth, and the ease with which an ice-point bath may be prepared and used. In a simple ice bath the emissivity is slightly less than unity, and we have calculated corrections that allow one to predict the apparent radiation temperature of the equivalent blackbody. We propose an alternate configuration that uses an auxiliary mirror. This configuration should provide an emissivity extremely close to unity.

© 1999 Optical Society of America

Full Article  |  PDF Article

Corrections

James W. Horwitz, "Water at the ice point: a useful quasi-blackbody infrared calibration source—erratum," Appl. Opt. 38, 6564-6564 (1999)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-38-31-6564

References

  • View by:
  • |
  • |
  • |

  1. J. W. T. Walsh, Photometry, 3rd ed. (Dover, New York, 1958), pp. 174–178.
  2. P. Atkins, Physical Chemistry, 6th ed. (W. H. Freeman, New York, 1978), pp. 143–144.
  3. R. C. Weast, ed., “U.S. standard atmosphere, 1976,” in CRC Handbook of Chemistry and Physics, 64th ed. (CRC Press, Boca Raton, Fla., 1983), pp. F-155–F-156.
  4. W. L. Wolfe, “Optical properties of water,” in Handbook of Military Infrared Technology, W. L. Wolfe, ed. (Office of Naval Research, Washington, 1965), pp. 362–367. This review article contains references to earlier research on the optical properties of water and ice.
  5. A. N. Rusk, D. Williams, M. R. Querry, “Optical constants of water in the infrared,” J. Opt. Soc. Am. 61, 893–903 (1971).
    [CrossRef]
  6. See, for example, R. W. Ditchburn, Light, (Dover, New York, 1991), p. 443.
  7. P. S. Ray, “Broadband complex refractive indices of ice and water,” Appl. Opt. 11, 1836–1844 (1972).
    [CrossRef] [PubMed]
  8. W. E. Forsythe, ed., Measurement of Radiant Energy (McGraw-Hill, New York, 1937), p. 23.
  9. N. V. Suryanarayana, Engineering Heat Transfer (West, Minneapolis, 1995), p. 572.
  10. R. C. Weast, ed., “Recommended consistent values of the fundamental physical constants,” in CRC Handbook of Chemistry and Physics, 64th ed., (CRC Press, Boca Raton, Fla., 1983), p. F-198.
  11. M. V. Klein, Optics, 1st ed. (Wiley, New York, 1970), pp. 121–125. See especially Klein’s Eq. 4.11 and the sentence following it.
  12. G. N. Plass, H. Yates, “Infrared transmission through the atmosphere,” in Handbook of Military Infrared Technology, W. L. Wolfe, ed. (Office of Naval Research, Washington, D.C., 1965), pp. 252–254.
  13. D. S. Erley, B. H. Blake, Infrared Spectra of Gases and Vapors, (Dow Chemical Company, Midland, Mich., 1965), Vol. 2.
  14. See, for example, M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965), p. 623.

1972 (1)

1971 (1)

A. N. Rusk, D. Williams, M. R. Querry, “Optical constants of water in the infrared,” J. Opt. Soc. Am. 61, 893–903 (1971).
[CrossRef]

Atkins, P.

P. Atkins, Physical Chemistry, 6th ed. (W. H. Freeman, New York, 1978), pp. 143–144.

Blake, B. H.

D. S. Erley, B. H. Blake, Infrared Spectra of Gases and Vapors, (Dow Chemical Company, Midland, Mich., 1965), Vol. 2.

Born, M.

See, for example, M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965), p. 623.

Ditchburn, R. W.

See, for example, R. W. Ditchburn, Light, (Dover, New York, 1991), p. 443.

Erley, D. S.

D. S. Erley, B. H. Blake, Infrared Spectra of Gases and Vapors, (Dow Chemical Company, Midland, Mich., 1965), Vol. 2.

Klein, M. V.

M. V. Klein, Optics, 1st ed. (Wiley, New York, 1970), pp. 121–125. See especially Klein’s Eq. 4.11 and the sentence following it.

Plass, G. N.

G. N. Plass, H. Yates, “Infrared transmission through the atmosphere,” in Handbook of Military Infrared Technology, W. L. Wolfe, ed. (Office of Naval Research, Washington, D.C., 1965), pp. 252–254.

Querry, M. R.

A. N. Rusk, D. Williams, M. R. Querry, “Optical constants of water in the infrared,” J. Opt. Soc. Am. 61, 893–903 (1971).
[CrossRef]

Ray, P. S.

Rusk, A. N.

A. N. Rusk, D. Williams, M. R. Querry, “Optical constants of water in the infrared,” J. Opt. Soc. Am. 61, 893–903 (1971).
[CrossRef]

Suryanarayana, N. V.

N. V. Suryanarayana, Engineering Heat Transfer (West, Minneapolis, 1995), p. 572.

Walsh, J. W. T.

J. W. T. Walsh, Photometry, 3rd ed. (Dover, New York, 1958), pp. 174–178.

Williams, D.

A. N. Rusk, D. Williams, M. R. Querry, “Optical constants of water in the infrared,” J. Opt. Soc. Am. 61, 893–903 (1971).
[CrossRef]

Wolf, E.

See, for example, M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965), p. 623.

Wolfe, W. L.

W. L. Wolfe, “Optical properties of water,” in Handbook of Military Infrared Technology, W. L. Wolfe, ed. (Office of Naval Research, Washington, 1965), pp. 362–367. This review article contains references to earlier research on the optical properties of water and ice.

Yates, H.

G. N. Plass, H. Yates, “Infrared transmission through the atmosphere,” in Handbook of Military Infrared Technology, W. L. Wolfe, ed. (Office of Naval Research, Washington, D.C., 1965), pp. 252–254.

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

A. N. Rusk, D. Williams, M. R. Querry, “Optical constants of water in the infrared,” J. Opt. Soc. Am. 61, 893–903 (1971).
[CrossRef]

Other (12)

See, for example, R. W. Ditchburn, Light, (Dover, New York, 1991), p. 443.

W. E. Forsythe, ed., Measurement of Radiant Energy (McGraw-Hill, New York, 1937), p. 23.

N. V. Suryanarayana, Engineering Heat Transfer (West, Minneapolis, 1995), p. 572.

R. C. Weast, ed., “Recommended consistent values of the fundamental physical constants,” in CRC Handbook of Chemistry and Physics, 64th ed., (CRC Press, Boca Raton, Fla., 1983), p. F-198.

M. V. Klein, Optics, 1st ed. (Wiley, New York, 1970), pp. 121–125. See especially Klein’s Eq. 4.11 and the sentence following it.

G. N. Plass, H. Yates, “Infrared transmission through the atmosphere,” in Handbook of Military Infrared Technology, W. L. Wolfe, ed. (Office of Naval Research, Washington, D.C., 1965), pp. 252–254.

D. S. Erley, B. H. Blake, Infrared Spectra of Gases and Vapors, (Dow Chemical Company, Midland, Mich., 1965), Vol. 2.

See, for example, M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, 1965), p. 623.

J. W. T. Walsh, Photometry, 3rd ed. (Dover, New York, 1958), pp. 174–178.

P. Atkins, Physical Chemistry, 6th ed. (W. H. Freeman, New York, 1978), pp. 143–144.

R. C. Weast, ed., “U.S. standard atmosphere, 1976,” in CRC Handbook of Chemistry and Physics, 64th ed. (CRC Press, Boca Raton, Fla., 1983), pp. F-155–F-156.

W. L. Wolfe, “Optical properties of water,” in Handbook of Military Infrared Technology, W. L. Wolfe, ed. (Office of Naval Research, Washington, 1965), pp. 362–367. This review article contains references to earlier research on the optical properties of water and ice.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Water emissivity as a function of wavelength.

Fig. 2
Fig. 2

Infrared camera viewing a self-emitter and a reflected image of a second self-emitter.

Fig. 3
Fig. 3

Depth of water that absorbs 99% of the incident energy.

Fig. 4
Fig. 4

Ice bath with an auxiliary mirror.

Tables (3)

Tables Icon

Table 1 Infrared Properties of Water in Contact with Aira

Tables Icon

Table 2 Apparent Source Temperature T3 (°C) for Water at the Ice Point as a Function of Background Temperature T0 and Wavelength λa

Tables Icon

Table 3 Apparent Source Temperature T3 for an Ice Bath and Auxiliary Mirror (Fig. 4) as a Function of Mirror Temperature T0 at a Wavelength of 12 µma

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

dTfdP=0.01-0.994=-0.01 °K/atm.
Tf=Tf0+ΔP dTfdP=0+0.737-1-0.01=+0.003° C,
ñ=n+ik,
R=n1-n22+k22n1+n22+k22,
Rλ+Tλ+Aλ=1,
Rλ+Aλ=1.
λ=1-Rλ.
Mλλ, T=c1λ5expc2/λT-1,
c1=3.741832×104Wμm4cm2,  c2=1.438786×104μm K.
Mλ=λ2Mλλ, T2+λ01-λ2Mλλ, T0,
M=λ1λ2λ2Mλλ, T2+λ01-λ2Mλλ, T0dλ.
MT3=MT0, T2,
MT=λ1λ2 Mλdλ
Mλ=2M2+01-2M0+21-01-2M2.
MiMλλ, Ti,  i =0, 1, 2,.

Metrics