Abstract

Transmission and phase-shift characteristics of dichroic high-pass filters with cutoff frequencies as high as 1.11 THz and of a cross-shaped grid bandpass filter with a resonance frequency of 280 GHz were measured with an electro-optic sampling terahertz time-domain spectrometer operating between 0.1 and 2 THz. Good agreement with transmission theories is found. We also compare the transmission performance of cascaded dichroic filters with that of cross-shaped grid bandpass filters. Both types of bandpass filter permit frequency-selective ultrafast experiments in the far-infrared spectral region. In the millimeter and the submillimeter wavelength regions, which are difficult to access by conventional means, knowledge of the frequency response of frequency-selective components is important for applications in frequency mixing, multiplying, and multiplexing in quasi-optical systems.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE Press, Piscataway, N.J., 1998).
    [CrossRef]
  2. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
    [CrossRef]
  3. V. P. Tomaselli, D. C. Edewaard, P. Gillan, K. D. Möller, “Far-infrared bandpass filters from cross-shaped grids,” Appl. Opt. 20, 1361–1366 (1981).
    [CrossRef] [PubMed]
  4. F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus, G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).
  5. D. A. Weitz, W. J. Skocpol, M. Tinkham, “Capacitive-mesh output couplers for optically pumped far-infrared lasers,” Opt. Lett. 3, 13–15 (1978).
    [CrossRef] [PubMed]
  6. R. D. Rawcliffe, C. M. Randall, “Metal mesh interference filters for the far infrared,” Appl. Opt. 6, 1353–1358 (1967).
    [CrossRef] [PubMed]
  7. C. Winnewisser, F. Lewen, H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A 66, 593–598 (1998). In this reference the phase shift Δϕ(ν) should read as Δϕ(ν) = ϕsample(ν) - ϕref(ν), and line 3 of Table 1 should read as filter C, l = 0.290 mm, d = 0.235 mm, s = 0.297 mm.
  8. M. van Exter, Ch. Fattinger, D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
    [CrossRef]
  9. T. Timusk, P. L. Richards, “Near millimeter wave bandpass filters,” Appl. Opt. 20, 1355–1360 (1981).
    [CrossRef] [PubMed]
  10. J. W. Archer, “A novel quasi-optical frequency multiplier design for millimeter and submillimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 32, 421–426 (1984).
    [CrossRef]
  11. A. Roberts, M. L. von Bibra, H.-P. Gemünd, E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15, 505–517 (1994).
    [CrossRef]
  12. R. Cahill, E. A. Parker, “Frequency selective surface design for submillimetric demultiplexing,” Microwave Opt. Technol. Lett. 13, 595–597 (1994).
    [CrossRef]
  13. N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).
  14. L. A. Robinson, “Electrical properties of metal-loaded radomes,” (National Technical Information Service, U.S. Department of Commerce, Springfield, Va., 1960).
  15. C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. 21, 1–7 (1973).
    [CrossRef]
  16. R. C. McPhedran, D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. 14, 1–20 (1977).
    [CrossRef]
  17. CST Computer Simulation Technology GmbH, Lauteschlägerstrasse 38, D-64289 Darmstadt, Germany.
  18. D. Steup, J. Weinzierl, “Resonant THz-meshes,” presented at the Fourth International Workshop on THz Electronics, Erlangen-Tennenlohe, Germany, 5–6 September 1996.
  19. C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
    [CrossRef]
  20. Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
    [CrossRef]
  21. A. Nahata, D. A. Auston, T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–153 (1996).
    [CrossRef]
  22. P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
    [CrossRef]
  23. A. Gürtler, C. Winnewisser, H. Helm, P. Uhd Jepsen, “Experimental and numerical studies of THz pulse propagation in the near and far field,” presented at the Twenty-First International Conference on Lasers and Laser Applications, 7–11 December 1998, Tucson, Ariz., paper TJ.5.
  24. P. R. Griffiths, J. A. De Herres, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986), Vol. 83: Chemical Analysis.
  25. C. Letrou, M. Gheudin, “Dichroic diplexer design for millimeter waves,” Int. J. Infrared Millim. Waves 13, 27–42 (1992).
    [CrossRef]
  26. D. W. Porterfield, J. L. Densing, E. R. Mueller, T. W. Crowe, R. M. Weikle, “Resonant metal-mesh bandpass filters for the far infrared,” Appl. Opt. 33, 6046–6052 (1994).
    [CrossRef] [PubMed]
  27. J. Bromage, S. Radic, G. P. Agrawal, C. R. Stroud, P. M. Fauchet, R. Sobolewski, “Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive aperatures of finite thickness,” J. Opt. Soc. Am. B 15, 1399–1405 (1998).
    [CrossRef]
  28. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 22, 908–919 (1992).
    [CrossRef]

1998 (2)

C. Winnewisser, F. Lewen, H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A 66, 593–598 (1998). In this reference the phase shift Δϕ(ν) should read as Δϕ(ν) = ϕsample(ν) - ϕref(ν), and line 3 of Table 1 should read as filter C, l = 0.290 mm, d = 0.235 mm, s = 0.297 mm.

J. Bromage, S. Radic, G. P. Agrawal, C. R. Stroud, P. M. Fauchet, R. Sobolewski, “Spatiotemporal shaping of half-cycle terahertz pulses by diffraction through conductive aperatures of finite thickness,” J. Opt. Soc. Am. B 15, 1399–1405 (1998).
[CrossRef]

1997 (1)

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

1996 (2)

A. Nahata, D. A. Auston, T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–153 (1996).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

1995 (2)

Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus, G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

1994 (3)

A. Roberts, M. L. von Bibra, H.-P. Gemünd, E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15, 505–517 (1994).
[CrossRef]

R. Cahill, E. A. Parker, “Frequency selective surface design for submillimetric demultiplexing,” Microwave Opt. Technol. Lett. 13, 595–597 (1994).
[CrossRef]

D. W. Porterfield, J. L. Densing, E. R. Mueller, T. W. Crowe, R. M. Weikle, “Resonant metal-mesh bandpass filters for the far infrared,” Appl. Opt. 33, 6046–6052 (1994).
[CrossRef] [PubMed]

1992 (2)

C. Letrou, M. Gheudin, “Dichroic diplexer design for millimeter waves,” Int. J. Infrared Millim. Waves 13, 27–42 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 22, 908–919 (1992).
[CrossRef]

1989 (1)

1984 (1)

J. W. Archer, “A novel quasi-optical frequency multiplier design for millimeter and submillimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 32, 421–426 (1984).
[CrossRef]

1981 (2)

1978 (1)

1977 (1)

R. C. McPhedran, D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. 14, 1–20 (1977).
[CrossRef]

1973 (1)

C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. 21, 1–7 (1973).
[CrossRef]

1967 (2)

R. D. Rawcliffe, C. M. Randall, “Metal mesh interference filters for the far infrared,” Appl. Opt. 6, 1353–1358 (1967).
[CrossRef] [PubMed]

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Agrawal, G. P.

Archer, J. W.

J. W. Archer, “A novel quasi-optical frequency multiplier design for millimeter and submillimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 32, 421–426 (1984).
[CrossRef]

Auston, D. A.

A. Nahata, D. A. Auston, T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–153 (1996).
[CrossRef]

Belov, S. P.

F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus, G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

Bromage, J.

Cahill, R.

R. Cahill, E. A. Parker, “Frequency selective surface design for submillimetric demultiplexing,” Microwave Opt. Technol. Lett. 13, 595–597 (1994).
[CrossRef]

Chen, C.-C.

C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. 21, 1–7 (1973).
[CrossRef]

Crowe, T. W.

De Herres, J. A.

P. R. Griffiths, J. A. De Herres, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986), Vol. 83: Chemical Analysis.

Densing, J. L.

Edewaard, D. C.

Fattinger, Ch.

Fauchet, P. M.

Gemünd, H.-P.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15, 505–517 (1994).
[CrossRef]

Gheudin, M.

C. Letrou, M. Gheudin, “Dichroic diplexer design for millimeter waves,” Int. J. Infrared Millim. Waves 13, 27–42 (1992).
[CrossRef]

Gillan, P.

Goldsmith, P. F.

P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE Press, Piscataway, N.J., 1998).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths, J. A. De Herres, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986), Vol. 83: Chemical Analysis.

Grischkowsky, D.

Gürtler, A.

A. Gürtler, C. Winnewisser, H. Helm, P. Uhd Jepsen, “Experimental and numerical studies of THz pulse propagation in the near and far field,” presented at the Twenty-First International Conference on Lasers and Laser Applications, 7–11 December 1998, Tucson, Ariz., paper TJ.5.

Heinz, T. F.

A. Nahata, D. A. Auston, T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–153 (1996).
[CrossRef]

Helm, H.

C. Winnewisser, F. Lewen, H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A 66, 593–598 (1998). In this reference the phase shift Δϕ(ν) should read as Δϕ(ν) = ϕsample(ν) - ϕref(ν), and line 3 of Table 1 should read as filter C, l = 0.290 mm, d = 0.235 mm, s = 0.297 mm.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

A. Gürtler, C. Winnewisser, H. Helm, P. Uhd Jepsen, “Experimental and numerical studies of THz pulse propagation in the near and far field,” presented at the Twenty-First International Conference on Lasers and Laser Applications, 7–11 December 1998, Tucson, Ariz., paper TJ.5.

Keiding, S. R.

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Klaus, Th.

F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus, G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

Kreysa, E.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15, 505–517 (1994).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 22, 908–919 (1992).
[CrossRef]

Letrou, C.

C. Letrou, M. Gheudin, “Dichroic diplexer design for millimeter waves,” Int. J. Infrared Millim. Waves 13, 27–42 (1992).
[CrossRef]

Lewen, F.

C. Winnewisser, F. Lewen, H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A 66, 593–598 (1998). In this reference the phase shift Δϕ(ν) should read as Δϕ(ν) = ϕsample(ν) - ϕref(ν), and line 3 of Table 1 should read as filter C, l = 0.290 mm, d = 0.235 mm, s = 0.297 mm.

F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus, G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

Maiwald, F.

F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus, G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).

Maystre, D.

R. C. McPhedran, D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. 14, 1–20 (1977).
[CrossRef]

McPhedran, R. C.

R. C. McPhedran, D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. 14, 1–20 (1977).
[CrossRef]

Möller, K. D.

Mueller, E. R.

Nahata, A.

A. Nahata, D. A. Auston, T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–153 (1996).
[CrossRef]

Parker, E. A.

R. Cahill, E. A. Parker, “Frequency selective surface design for submillimetric demultiplexing,” Microwave Opt. Technol. Lett. 13, 595–597 (1994).
[CrossRef]

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 22, 908–919 (1992).
[CrossRef]

Porterfield, D. W.

Radic, S.

Randall, C. M.

Rawcliffe, R. D.

Richards, P. L.

Roberts, A.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15, 505–517 (1994).
[CrossRef]

Robinson, L. A.

L. A. Robinson, “Electrical properties of metal-loaded radomes,” (National Technical Information Service, U.S. Department of Commerce, Springfield, Va., 1960).

Schall, M.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Schyja, V.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Skocpol, W. J.

Sobolewski, R.

Steup, D.

D. Steup, J. Weinzierl, “Resonant THz-meshes,” presented at the Fourth International Workshop on THz Electronics, Erlangen-Tennenlohe, Germany, 5–6 September 1996.

Stroud, C. R.

Timusk, T.

Tinkham, M.

Tomaselli, V. P.

Uhd Jepsen, P.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

A. Gürtler, C. Winnewisser, H. Helm, P. Uhd Jepsen, “Experimental and numerical studies of THz pulse propagation in the near and far field,” presented at the Twenty-First International Conference on Lasers and Laser Applications, 7–11 December 1998, Tucson, Ariz., paper TJ.5.

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

van Exter, M.

von Bibra, M. L.

A. Roberts, M. L. von Bibra, H.-P. Gemünd, E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15, 505–517 (1994).
[CrossRef]

Weikle, R. M.

Weiner, A. M.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 22, 908–919 (1992).
[CrossRef]

Weinzierl, J.

D. Steup, J. Weinzierl, “Resonant THz-meshes,” presented at the Fourth International Workshop on THz Electronics, Erlangen-Tennenlohe, Germany, 5–6 September 1996.

Weitz, D. A.

Winnewisser, C.

C. Winnewisser, F. Lewen, H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A 66, 593–598 (1998). In this reference the phase shift Δϕ(ν) should read as Δϕ(ν) = ϕsample(ν) - ϕref(ν), and line 3 of Table 1 should read as filter C, l = 0.290 mm, d = 0.235 mm, s = 0.297 mm.

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

A. Gürtler, C. Winnewisser, H. Helm, P. Uhd Jepsen, “Experimental and numerical studies of THz pulse propagation in the near and far field,” presented at the Twenty-First International Conference on Lasers and Laser Applications, 7–11 December 1998, Tucson, Ariz., paper TJ.5.

Winnewisser, G.

F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus, G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

Wu, Q.

Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 22, 908–919 (1992).
[CrossRef]

Zhang, X.-C.

Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. (1)

R. C. McPhedran, D. Maystre, “On the theory and solar application of inductive grids,” Appl. Phys. 14, 1–20 (1977).
[CrossRef]

Appl. Phys. A (1)

C. Winnewisser, F. Lewen, H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys. A 66, 593–598 (1998). In this reference the phase shift Δϕ(ν) should read as Δϕ(ν) = ϕsample(ν) - ϕref(ν), and line 3 of Table 1 should read as filter C, l = 0.290 mm, d = 0.235 mm, s = 0.297 mm.

Appl. Phys. Lett. (3)

C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe,” Appl. Phys. Lett. 70, 3069–3071 (1997).
[CrossRef]

Q. Wu, X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
[CrossRef]

A. Nahata, D. A. Auston, T. F. Heinz, “Coherent detection of freely propagating terahertz radiation by electro-optic sampling,” Appl. Phys. Lett. 68, 150–153 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 22, 908–919 (1992).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

J. W. Archer, “A novel quasi-optical frequency multiplier design for millimeter and submillimeter wavelengths,” IEEE Trans. Microwave Theory Tech. 32, 421–426 (1984).
[CrossRef]

C.-C. Chen, “Transmission of microwave through perforated flat plates of finite thickness,” IEEE Trans. Microwave Theory Tech. 21, 1–7 (1973).
[CrossRef]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys. 7, 37–55 (1967).
[CrossRef]

Int. J. Infrared Millim. Waves (2)

A. Roberts, M. L. von Bibra, H.-P. Gemünd, E. Kreysa, “Thick grids with circular apertures: a comparison of theoretical and experimental performance,” Int. J. Infrared Millim. Waves 15, 505–517 (1994).
[CrossRef]

C. Letrou, M. Gheudin, “Dichroic diplexer design for millimeter waves,” Int. J. Infrared Millim. Waves 13, 27–42 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microwave Opt. Technol. Lett. (1)

R. Cahill, E. A. Parker, “Frequency selective surface design for submillimetric demultiplexing,” Microwave Opt. Technol. Lett. 13, 595–597 (1994).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

P. Uhd Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E 53, R3052–R3054 (1996).
[CrossRef]

Z. Naturforsch. Teil A (1)

F. Lewen, S. P. Belov, F. Maiwald, Th. Klaus, G. Winnewisser, “A quasi-optical multiplier for terahertz spectroscopy,” Z. Naturforsch. Teil A 50, 1182–1186 (1995).

Other (7)

A. Gürtler, C. Winnewisser, H. Helm, P. Uhd Jepsen, “Experimental and numerical studies of THz pulse propagation in the near and far field,” presented at the Twenty-First International Conference on Lasers and Laser Applications, 7–11 December 1998, Tucson, Ariz., paper TJ.5.

P. R. Griffiths, J. A. De Herres, Fourier Transform Infrared Spectrometry (Wiley, New York, 1986), Vol. 83: Chemical Analysis.

N. Marcuvitz, Waveguide Handbook (McGraw-Hill, New York, 1951).

L. A. Robinson, “Electrical properties of metal-loaded radomes,” (National Technical Information Service, U.S. Department of Commerce, Springfield, Va., 1960).

P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications (IEEE Press, Piscataway, N.J., 1998).
[CrossRef]

CST Computer Simulation Technology GmbH, Lauteschlägerstrasse 38, D-64289 Darmstadt, Germany.

D. Steup, J. Weinzierl, “Resonant THz-meshes,” presented at the Fourth International Workshop on THz Electronics, Erlangen-Tennenlohe, Germany, 5–6 September 1996.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Microscope image of a segment of a 1.11-THz dichroic filter with hole diameters d = 168 µm and a hole spacings s = 226 µm. The material consists of gold-plated brass l = 153 µm. The diameter of the active area is 11 mm, which results in a total number of approximately 1600 drilled holes.

Fig. 2
Fig. 2

Microscope image of a galvanized cross-shaped bandpass filter with a resonance frequency ν r = 280 GHz. The parameter set of the cross-shaped apertures is mesh period G = 810 µm, slot length L = 570 µm, strap width C = 650 µm, and foil thickness t = 10 µm. This filter was fabricated at the University of Erlangen.18

Fig. 3
Fig. 3

Experimental setup. THz emitter, 1 cm2-aperture GaAs chip backed by two GaAs wafers to delay the THz pulse echo19; HV, pulsed high voltage; A, aperture; Lens, high-density polyethylene lens with f = 66 mm; PBS, pellicle beam splitter; eo crystal, ZnTe; SBC, Soleil–Babinet compensator; PP, polarizing prism; PD, balanced photodiodes; LIA, lock-in amplifier.

Fig. 4
Fig. 4

Uppermost curve, typical THz reference pulse without a FSC. The numbering of the following sample pulses corresponds to the different FSC’s listed in Table 1. All sample pulses pertain to single FSC’s, except sample pulses #4 and #5, which are cascaded dichroic filters. The less steeply rising edge of sample pulse #7 occurs because the THz pulse in this particular case consists of a limited frequency spectrum, reaching only approximately 1 THz. Therefore the appropriate reference pulse exhibits a softer shape than does the reference pulse shown at the top of the figure.

Fig. 5
Fig. 5

(A) Power transmittance T P of dichroic filter #1 is shown by squares. The theoretical transmittance characteristics for the lowest transiting mode TE11 is shown by the solid black curve. The experimental cutoff frequency is ν c = 1.11 THz at -3 dB peak transmittance. (B) Phase shift Δϕ between the reference pulse and the sample pulse. Below 600 GHz the transmittance drops below -30 dB so that measured phase values are poorly determined.

Fig. 6
Fig. 6

Transmission response of dichroic filter #1 from Fig. 5(A) is plotted in decibels at 10 log(T P ) to show the rejection of frequencies below the cutoff frequency. This measurement shows also the good signal-to-noise ratio of approximately 104:1 when acquired with a lock-in amplifier set for a 100-ms time constant.

Fig. 7
Fig. 7

(A) Transmittance curves of dichroic filters #2 and #3 with ν c = 155 GHz and ν c = 242 GHz. (B) Transmittance curve (squares) of the two filters placed behind each other in the terahertz beam path, corresponding to sample pulse #4 in Fig. 4. The theoretical transmittance curve (curve) is obtained by multiplication of T P 1 with T P 2 . (C) Phase shift of each filter Δϕ1 and Δϕ2. (D) Measured phase shift Δϕcas of the cascaded filters (dashed black curve) in comparison with the added individual phase-shift curves of (C) (solid gray curve).

Fig. 8
Fig. 8

(A) Transmittance curve of cascaded dichroic filters #5 with ν c = 242 GHz, forming a bandpass filter. Dotted curve, phase shift, which is twice the phase shift of a single 228-GHz dichroic filter (see Fig. 7). (B) Transmittance curve of cross-shaped grid bandpass filter #6 with theoretical transmission characteristic according to the MAFIA program. Dotted curve, phase shift.

Fig. 9
Fig. 9

(A) Comparison of the transmittance curves of thin (l = 125 µm) dichroic filter #7 with ν c = 228 GHz (circles) and thick (l = 700 µm) dichroic filter #3 with ν c = 242 GHz (squares). Curves, theoretical transmission data obtained with Chen’s theory. (B) Dotted grey curve, phase shift of the thin dichroic filter; dashed black curve, phase shift of the thick dichroic filter.

Tables (1)

Tables Icon

Table 1 Parameters of the Dichroic Filters and of the Cross-Shaped Grid Bandpass Filter Measured with an Optical Precision Microscopea

Metrics