Abstract

We discuss the use of single-mode cavity ringdown spectroscopy with pulsed lasers for quantitative gas density and line strength measurements. The single-mode approach to cavity ringdown spectroscopy gives single exponential decay signals without mode beating, which allows measurements with uncertainties near the shot-noise limit. The technique is demonstrated with a 10-cm-long ringdown cavity and a pulsed, frequency-stabilized optical parametric oscillator as the light source. A noise-equivalent absorption coefficient of 5 × 10-10 cm-1 Hz-1/2 is demonstrated, and the relative standard deviation in the ringdown time (στ/τ) extracted from a fit to an individual ringdown curve is found to be the same as that for an ensemble of hundreds of independent measurements. Repeated measurement of a line strength is shown to have a standard deviation <0.3%. The effects of normally distributed noise on quantities measured using cavity ringdown spectroscopy are discussed, formulas for the relative standard deviation in the ringdown time are given in the shot- and technical-noise limits, and the noise-equivalent absorption coefficient in these limits are compared for pulsed and continuous-wave light sources.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. E. De Lange, “Losses suffered by coherent light redirected and refocussed many times in an enclosed medium,” Bell Syst. Tech. J. 44, 283–302 (1965).
    [CrossRef]
  2. W. M. Hughes, N. T. Olson, R. Hunter, “Experiments on 558-nm argon oxide laser system,” Appl. Phys. Lett. 28, 81–83 (1976).
    [CrossRef]
  3. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [CrossRef]
  4. D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone band with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
    [CrossRef]
  5. J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
    [CrossRef]
  6. J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford U. Press, Oxford, UK, 1998), Chap. 7.
  7. K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
    [CrossRef]
  8. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  9. J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ring-down spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
    [CrossRef] [PubMed]
  10. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
    [CrossRef]
  11. D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
    [CrossRef]
  12. L. A. Pugh, K. N. Rao, “Intensities from infrared spectra,” in Modern Spectroscopy, K. N. Rao, ed. (Academic, New York, 1976), Vol. 1, pp. 165–177.
  13. R. D. van Zee, J. P. Looney, J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 46–55 (1999).
    [CrossRef]
  14. W. J. Alford, T. D. Raymond, A. V. Smith, “Characterization of a ring optical parametric oscillator,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds. Vol. 20, of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 476–479.
  15. A. V. Smith, W. J. Alford, T. D. Raymond, M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
    [CrossRef]
  16. E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
    [CrossRef]
  17. D. F. Plusquellic, O. Votava, D. J. Nesbitt, “Absolute frequency stabilization of an injection-seeded optical parametric oscillator,” Appl. Opt. 35, 1464–1472 (1996).
    [CrossRef] [PubMed]
  18. J. L. Hall, “Laser stabilization lectures,” Fall Semester 1985, University of Colorado, Boulder, Colo.
  19. A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 4–14 (1990).
  20. H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
    [CrossRef]
  21. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chaps. 6, 9, and 10.
  22. The data along a ring-down curve are not, strictly speaking, statistically independent because either the detector electronics or digitizer impose a bandwidth filter on the signal. K. K. Lehmann has derived formulas for fitting ring-down signals in which the data are correlated, and he will present these algorithms in a forthcoming publication.
  23. R. von Mises, Mathematical Theory of Probability and Statistics (Academic, New York, 1964), Chaps. IX(C) and IX(E).
  24. W. A. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), Chap. 13.
  25. M. D. Levenson, G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979).
    [CrossRef]
  26. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
    [CrossRef]
  27. H. D. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen band,” Astrophys. J. 108, 167–190 (1948).
    [CrossRef]
  28. K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
    [CrossRef]
  29. D. C. Hovde, J. H. Timmermans, G. Scoles, K. K. Lehmann, “High power, injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
    [CrossRef]
  30. D. Romanini, K. K. Lehmann, “Line-mixing in the 106 ← 000 overtone transition of HCN,” J. Chem. Phys. 105, 81–88 (1996).
    [CrossRef]
  31. R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Double-resonance spectroscopy on triplet states of CO,” J. Mol. Spectrosc. 165, 303–314 (1994).
    [CrossRef]
  32. N. Seiser, D. C. Robie, “Pressure broadening in the oxygen b1∑g+ (v′ = 1) ← X3∑g- (v″ = 0) band measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 282, 263–267 (1998).
    [CrossRef]
  33. R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
    [CrossRef]
  34. D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
    [CrossRef]
  35. B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
    [CrossRef]
  36. S. L. Bragg, J. W. Brault, W. H. Smith, “Line positions and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
    [CrossRef]
  37. D. W. Ferguson, K. N. Rao, M. E. Mickelson, L. E. Larson, “An experimental study of the 4-0 and 5-0 quadrupole vibration rotation bands of H2 in the visible,” J. Mol. Spectrosc. 160, 315–325 (1993).
    [CrossRef]
  38. L. A. Guildner, D. P. Johnson, F. E. Jones, “Vapor pressure of water at its triple point,” J. Res. Natl. Bur. Stand. 80, 505–521 (1976).
    [CrossRef]

1998 (3)

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

N. Seiser, D. C. Robie, “Pressure broadening in the oxygen b1∑g+ (v′ = 1) ← X3∑g- (v″ = 0) band measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 282, 263–267 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

1997 (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

1996 (6)

D. F. Plusquellic, O. Votava, D. J. Nesbitt, “Absolute frequency stabilization of an injection-seeded optical parametric oscillator,” Appl. Opt. 35, 1464–1472 (1996).
[CrossRef] [PubMed]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ring-down spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
[CrossRef] [PubMed]

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Line-mixing in the 106 ← 000 overtone transition of HCN,” J. Chem. Phys. 105, 81–88 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

1995 (3)

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

A. V. Smith, W. J. Alford, T. D. Raymond, M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

1994 (3)

D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
[CrossRef]

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Double-resonance spectroscopy on triplet states of CO,” J. Mol. Spectrosc. 165, 303–314 (1994).
[CrossRef]

1993 (2)

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone band with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

D. W. Ferguson, K. N. Rao, M. E. Mickelson, L. E. Larson, “An experimental study of the 4-0 and 5-0 quadrupole vibration rotation bands of H2 in the visible,” J. Mol. Spectrosc. 160, 315–325 (1993).
[CrossRef]

1991 (1)

D. C. Hovde, J. H. Timmermans, G. Scoles, K. K. Lehmann, “High power, injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

1987 (1)

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

1982 (1)

S. L. Bragg, J. W. Brault, W. H. Smith, “Line positions and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

1979 (1)

M. D. Levenson, G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979).
[CrossRef]

1976 (2)

W. M. Hughes, N. T. Olson, R. Hunter, “Experiments on 558-nm argon oxide laser system,” Appl. Phys. Lett. 28, 81–83 (1976).
[CrossRef]

L. A. Guildner, D. P. Johnson, F. E. Jones, “Vapor pressure of water at its triple point,” J. Res. Natl. Bur. Stand. 80, 505–521 (1976).
[CrossRef]

1966 (1)

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

1965 (1)

O. E. De Lange, “Losses suffered by coherent light redirected and refocussed many times in an enclosed medium,” Bell Syst. Tech. J. 44, 283–302 (1965).
[CrossRef]

1948 (1)

H. D. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen band,” Astrophys. J. 108, 167–190 (1948).
[CrossRef]

Alford, W. J.

A. V. Smith, W. J. Alford, T. D. Raymond, M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
[CrossRef]

W. J. Alford, T. D. Raymond, A. V. Smith, “Characterization of a ring optical parametric oscillator,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds. Vol. 20, of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 476–479.

Ashworth, S. H.

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

Babcock, H. D.

H. D. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen band,” Astrophys. J. 108, 167–190 (1948).
[CrossRef]

Berden, G.

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

Bevington, P. R.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chaps. 6, 9, and 10.

Boogaarts, M. G. H.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Double-resonance spectroscopy on triplet states of CO,” J. Mol. Spectrosc. 165, 303–314 (1994).
[CrossRef]

D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
[CrossRef]

Bowers, M. S.

Bragg, S. L.

S. L. Bragg, J. W. Brault, W. H. Smith, “Line positions and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

Brault, J. W.

S. L. Bragg, J. W. Brault, W. H. Smith, “Line positions and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

Copeland, R. A.

D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
[CrossRef]

De Lange, O. E.

O. E. De Lange, “Losses suffered by coherent light redirected and refocussed many times in an enclosed medium,” Bell Syst. Tech. J. 44, 283–302 (1965).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Eesley, G. L.

M. D. Levenson, G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979).
[CrossRef]

Engeln, R.

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

Farrell, J. T.

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

Ferguson, D. W.

D. W. Ferguson, K. N. Rao, M. E. Mickelson, L. E. Larson, “An experimental study of the 4-0 and 5-0 quadrupole vibration rotation bands of H2 in the visible,” J. Mol. Spectrosc. 160, 315–325 (1993).
[CrossRef]

Flannery, B. P.

W. A. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), Chap. 13.

Guildner, L. A.

L. A. Guildner, D. P. Johnson, F. E. Jones, “Vapor pressure of water at its triple point,” J. Res. Natl. Bur. Stand. 80, 505–521 (1976).
[CrossRef]

Harb, C. C.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Harris, J. S.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Herzberg, L.

H. D. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen band,” Astrophys. J. 108, 167–190 (1948).
[CrossRef]

Hodges, J. T.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ring-down spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
[CrossRef] [PubMed]

J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford U. Press, Oxford, UK, 1998), Chap. 7.

R. D. van Zee, J. P. Looney, J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 46–55 (1999).
[CrossRef]

Holleman, I.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

Hovde, D. C.

D. C. Hovde, J. H. Timmermans, G. Scoles, K. K. Lehmann, “High power, injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Huestis, D. L.

D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
[CrossRef]

Hughes, W. M.

W. M. Hughes, N. T. Olson, R. Hunter, “Experiments on 558-nm argon oxide laser system,” Appl. Phys. Lett. 28, 81–83 (1976).
[CrossRef]

Hunter, R.

W. M. Hughes, N. T. Olson, R. Hunter, “Experiments on 558-nm argon oxide laser system,” Appl. Phys. Lett. 28, 81–83 (1976).
[CrossRef]

Johnson, D. P.

L. A. Guildner, D. P. Johnson, F. E. Jones, “Vapor pressure of water at its triple point,” J. Res. Natl. Bur. Stand. 80, 505–521 (1976).
[CrossRef]

Jones, F. E.

L. A. Guildner, D. P. Johnson, F. E. Jones, “Vapor pressure of water at its triple point,” J. Res. Natl. Bur. Stand. 80, 505–521 (1976).
[CrossRef]

Jongma, R. T.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Double-resonance spectroscopy on triplet states of CO,” J. Mol. Spectrosc. 165, 303–314 (1994).
[CrossRef]

D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
[CrossRef]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Knutsen, K.

D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
[CrossRef]

Kogelnik, H.

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Larson, L. E.

D. W. Ferguson, K. N. Rao, M. E. Mickelson, L. E. Larson, “An experimental study of the 4-0 and 5-0 quadrupole vibration rotation bands of H2 in the visible,” J. Mol. Spectrosc. 160, 315–325 (1993).
[CrossRef]

Lehmann, K. K.

D. Romanini, K. K. Lehmann, “Line-mixing in the 106 ← 000 overtone transition of HCN,” J. Chem. Phys. 105, 81–88 (1996).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone band with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

D. C. Hovde, J. H. Timmermans, G. Scoles, K. K. Lehmann, “High power, injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Levenson, M. D.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

M. D. Levenson, G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979).
[CrossRef]

Li, T.

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Looney, J. P.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ring-down spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
[CrossRef] [PubMed]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford U. Press, Oxford, UK, 1998), Chap. 7.

R. D. van Zee, J. P. Looney, J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 46–55 (1999).
[CrossRef]

Meijer, G.

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Double-resonance spectroscopy on triplet states of CO,” J. Mol. Spectrosc. 165, 303–314 (1994).
[CrossRef]

D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
[CrossRef]

Mickelson, M. E.

D. W. Ferguson, K. N. Rao, M. E. Mickelson, L. E. Larson, “An experimental study of the 4-0 and 5-0 quadrupole vibration rotation bands of H2 in the visible,” J. Mol. Spectrosc. 160, 315–325 (1993).
[CrossRef]

Nesbitt, D. J.

D. F. Plusquellic, O. Votava, D. J. Nesbitt, “Absolute frequency stabilization of an injection-seeded optical parametric oscillator,” Appl. Opt. 35, 1464–1472 (1996).
[CrossRef] [PubMed]

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

Olson, N. T.

W. M. Hughes, N. T. Olson, R. Hunter, “Experiments on 558-nm argon oxide laser system,” Appl. Phys. Lett. 28, 81–83 (1976).
[CrossRef]

Paldus, B. A.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Plusquellic, D. F.

Press, W. A.

W. A. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), Chap. 13.

Pugh, L. A.

L. A. Pugh, K. N. Rao, “Intensities from infrared spectra,” in Modern Spectroscopy, K. N. Rao, ed. (Academic, New York, 1976), Vol. 1, pp. 165–177.

Rao, K. N.

D. W. Ferguson, K. N. Rao, M. E. Mickelson, L. E. Larson, “An experimental study of the 4-0 and 5-0 quadrupole vibration rotation bands of H2 in the visible,” J. Mol. Spectrosc. 160, 315–325 (1993).
[CrossRef]

L. A. Pugh, K. N. Rao, “Intensities from infrared spectra,” in Modern Spectroscopy, K. N. Rao, ed. (Academic, New York, 1976), Vol. 1, pp. 165–177.

Raymond, T. D.

A. V. Smith, W. J. Alford, T. D. Raymond, M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
[CrossRef]

W. J. Alford, T. D. Raymond, A. V. Smith, “Characterization of a ring optical parametric oscillator,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds. Vol. 20, of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 476–479.

Riedle, E.

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

Ritter, K. J.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Robie, D. C.

N. Seiser, D. C. Robie, “Pressure broadening in the oxygen b1∑g+ (v′ = 1) ← X3∑g- (v″ = 0) band measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 282, 263–267 (1998).
[CrossRef]

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

D. Romanini, K. K. Lehmann, “Line-mixing in the 106 ← 000 overtone transition of HCN,” J. Chem. Phys. 105, 81–88 (1996).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone band with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Scoles, G.

D. C. Hovde, J. H. Timmermans, G. Scoles, K. K. Lehmann, “High power, injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Seiser, N.

N. Seiser, D. C. Robie, “Pressure broadening in the oxygen b1∑g+ (v′ = 1) ← X3∑g- (v″ = 0) band measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 282, 263–267 (1998).
[CrossRef]

Siegman, A. E.

A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 4–14 (1990).

Slanger, T. G.

D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
[CrossRef]

Smith, A. V.

A. V. Smith, W. J. Alford, T. D. Raymond, M. S. Bowers, “Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2253–2267 (1995).
[CrossRef]

W. J. Alford, T. D. Raymond, A. V. Smith, “Characterization of a ring optical parametric oscillator,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds. Vol. 20, of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 476–479.

Smith, W. H.

S. L. Bragg, J. W. Brault, W. H. Smith, “Line positions and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

Spence, T. G.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

Teukolsky, S. A.

W. A. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), Chap. 13.

Timmermans, J. H.

D. C. Hovde, J. H. Timmermans, G. Scoles, K. K. Lehmann, “High power, injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

van Zee, R. D.

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Laser bandwidth effects in quantitative cavity ring-down spectroscopy,” Appl. Opt. 35, 4112–4116 (1996).
[CrossRef] [PubMed]

J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford U. Press, Oxford, UK, 1998), Chap. 7.

R. D. van Zee, J. P. Looney, J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 46–55 (1999).
[CrossRef]

Vetterling, W. T.

W. A. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), Chap. 13.

von Helden, G.

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

von Mises, R.

R. von Mises, Mathematical Theory of Probability and Statistics (Academic, New York, 1964), Chaps. IX(C) and IX(E).

Votava, O.

Wilke, B.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Wilkerson, T. D.

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

Xie, J.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. (1)

M. D. Levenson, G. L. Eesley, “Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy,” Appl. Phys. 19, 1–17 (1979).
[CrossRef]

Appl. Phys. Lett. (1)

W. M. Hughes, N. T. Olson, R. Hunter, “Experiments on 558-nm argon oxide laser system,” Appl. Phys. Lett. 28, 81–83 (1976).
[CrossRef]

Astrophys. J. (2)

S. L. Bragg, J. W. Brault, W. H. Smith, “Line positions and strengths in the H2 quadrupole spectrum,” Astrophys. J. 263, 999–1004 (1982).
[CrossRef]

H. D. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen band,” Astrophys. J. 108, 167–190 (1948).
[CrossRef]

Bell Syst. Tech. J. (1)

O. E. De Lange, “Losses suffered by coherent light redirected and refocussed many times in an enclosed medium,” Bell Syst. Tech. J. 44, 283–302 (1965).
[CrossRef]

Can. J. Phys. (1)

D. L. Huestis, R. A. Copeland, K. Knutsen, T. G. Slanger, R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Branch intensities and oscillator strengths for the Herzberg absorption systems of oxygen,” Can. J. Phys. 72, 1109–1121 (1994).
[CrossRef]

Chem. Phys. Lett. (4)

N. Seiser, D. C. Robie, “Pressure broadening in the oxygen b1∑g+ (v′ = 1) ← X3∑g- (v″ = 0) band measured by cavity ring-down spectroscopy,” Chem. Phys. Lett. 282, 263–267 (1998).
[CrossRef]

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[CrossRef]

D. Romanini, A. A. Kachanov, N. Sadeghi, F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264, 316–322 (1997).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, R. N. Zare, “Optical heterodyne detection in cavity ring-down spectroscopy,” Chem. Phys. Lett. 290, 335–340 (1998).
[CrossRef]

J. Appl. Phys. (1)

B. A. Paldus, C. C. Harb, T. G. Spence, B. Wilke, J. Xie, J. S. Harris, R. N. Zare, “Cavity-locked ring-down spectroscopy,” J. Appl. Phys. 83, 3991–3997 (1998).
[CrossRef]

J. Chem. Phys. (5)

D. Romanini, K. K. Lehmann, “Line-mixing in the 106 ← 000 overtone transition of HCN,” J. Chem. Phys. 105, 81–88 (1996).
[CrossRef]

D. Romanini, K. K. Lehmann, “Ring-down cavity absorption spectroscopy of the very weak HCN overtone band with six, seven, and eight stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993).
[CrossRef]

J. T. Hodges, J. P. Looney, R. D. van Zee, “Response of a ring-down cavity to an arbitrary excitation,” J. Chem. Phys. 105, 10,278–10,288 (1996).
[CrossRef]

K. K. Lehmann, D. Romanini, “The superposition principle and cavity ring-down spectroscopy,” J. Chem. Phys. 105, 10,263–10,277 (1996).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. Mol. Spectrosc. (3)

D. W. Ferguson, K. N. Rao, M. E. Mickelson, L. E. Larson, “An experimental study of the 4-0 and 5-0 quadrupole vibration rotation bands of H2 in the visible,” J. Mol. Spectrosc. 160, 315–325 (1993).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, G. Meijer, “Double-resonance spectroscopy on triplet states of CO,” J. Mol. Spectrosc. 165, 303–314 (1994).
[CrossRef]

K. J. Ritter, T. D. Wilkerson, “High-resolution spectroscopy of the oxygen A-band,” J. Mol. Spectrosc. 121, 1–19 (1987).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Res. Natl. Bur. Stand. (1)

L. A. Guildner, D. P. Johnson, F. E. Jones, “Vapor pressure of water at its triple point,” J. Res. Natl. Bur. Stand. 80, 505–521 (1976).
[CrossRef]

Opt. Commun. (1)

D. C. Hovde, J. H. Timmermans, G. Scoles, K. K. Lehmann, “High power, injection seeded optical parametric oscillator,” Opt. Commun. 86, 294–300 (1991).
[CrossRef]

Proc. IEEE (1)

H. Kogelnik, T. Li, “Laser beams and resonators,” Proc. IEEE 54, 1312–1329 (1966).
[CrossRef]

Rev. Sci. Instrum. (3)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity ring down spectroscopy,” Rev. Sci. Instrum. 66, 2821–2827 (1995).
[CrossRef]

E. Riedle, S. H. Ashworth, J. T. Farrell, D. J. Nesbitt, “Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity,” Rev. Sci. Instrum. 65, 42–48 (1994).
[CrossRef]

Other (10)

L. A. Pugh, K. N. Rao, “Intensities from infrared spectra,” in Modern Spectroscopy, K. N. Rao, ed. (Academic, New York, 1976), Vol. 1, pp. 165–177.

R. D. van Zee, J. P. Looney, J. T. Hodges, “Measuring pressure with cavity ring-down spectroscopy,” in Advanced Sensors and Monitors for Process Industries and the Environment, W. A. de Groot, ed., Proc. SPIE3535, 46–55 (1999).
[CrossRef]

W. J. Alford, T. D. Raymond, A. V. Smith, “Characterization of a ring optical parametric oscillator,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds. Vol. 20, of OSA Proceedings Series (Optical Society of America, Washington, D. C., 1994), pp. 476–479.

J. P. Looney, J. T. Hodges, R. D. van Zee, “Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers,” in Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, K. A. Busch, M. A. Busch, eds. (Oxford U. Press, Oxford, UK, 1998), Chap. 7.

P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), Chaps. 6, 9, and 10.

The data along a ring-down curve are not, strictly speaking, statistically independent because either the detector electronics or digitizer impose a bandwidth filter on the signal. K. K. Lehmann has derived formulas for fitting ring-down signals in which the data are correlated, and he will present these algorithms in a forthcoming publication.

R. von Mises, Mathematical Theory of Probability and Statistics (Academic, New York, 1964), Chaps. IX(C) and IX(E).

W. A. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, UK, 1989), Chap. 13.

J. L. Hall, “Laser stabilization lectures,” Fall Semester 1985, University of Colorado, Boulder, Colo.

A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 4–14 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the concept of single-mode CRDS using realistic experimental parameters. Panels (a) and (b) show, respectively, the power spectrum of the incident light compared with the cavity mode spectrum, plotted in units of the free spectral range (FSR is c/2l) and the temporal profile of the incident light, plotted in units of the cavity round-trip time (t r = 2l/ c). Panel (c) shows the spectrum of the exiting radiation, and panel (d) shows the simple exponential decay signal expected as a result of exciting a single mode.

Fig. 2
Fig. 2

Illustration of the measurement of the absorption coefficient as a continuous function of frequency using single-mode CRDS. Initially, the laser and the cavity resonance are at one frequency (solid curves). The ring-down time, and thereby the absorption coefficient, is measured. The laser frequency is then changed, and the cavity length is varied so the cavity resonances are shifted to follow the laser (dashed curves). The abscissa is in units of the cavity FSR.

Fig. 3
Fig. 3

Panel (a) shows a typical ring-down curve after the baseline has been subtracted. Note that the data span nine time constants. The best-fit value of the ring-down time is 9.502 µs, with a relative standard deviation στ/τ of 3 × 10-4. Panel (b) shows the residuals to the fit. The solid curves are twice the standard deviation for the shot noise at the fluence of this trace, and the dashed curve is twice the standard deviation for the technical noise measured in the baseline preceeding the ring-down signal.

Fig. 4
Fig. 4

Cumulative probability distributions (i.e., the fraction of an ensemble of independent measurements with a value equal to or less than a given value of τ as a function of τ) for the measured (open circles) and a calculated distribution (solid curve). The measured distribution is based on 500 ring-down measurements. The calculated distribution is based on the mean standard deviation extracted from individual fits to ring-down curves 〈στ〉 and the mean ring-down time τ̅.

Fig. 5
Fig. 5

Three spectra of the p Q(9) line of the A band of 16O2 and a fit of a Doppler profile to the data. The best-fit parameters were peak losses of 124.9 × 10-6 per pass, a FWHM of 857.8 MHz, and empty cavity losses of 35.6 × 10-6 per pass. The pressure was 199 Pa.

Fig. 6
Fig. 6

Pressure-broadened spectra of the p Q(9) line of the A band of 16O2. The partial pressure of oxygen was ∼0.2 kPa in each scan. Superimposed on each spectrum is a fit using the Galatry line-shape function and effective line-shape parameters, that is, the mole-fraction-weighed sum of the O2–N2 and O2–O2 parameters.

Fig. 7
Fig. 7

NEA coefficient as a function of detection system NEP for cw and pulsed excitation of a 0.5-m-long ring-down cavity constructed with mirrors of R = 0.999965. In all cases, 10 mW was assumed to be incident on the cavity, although the cw linewidth of the incident light varied as noted in the figure. See Section 4 for further details.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Vt; ω=pfmn2πσωc1-R2l2 G exp-tτω+Vbl+t,
τω=lc1-R+αωl,
αω=τempty - τωcτemptyτω.
αω=2πcnSfω.
σi2=ωGViΔt+σds2+13Vfs2N2.
σττω=2lc1-R σωω2π pfmnτω1/2.
σττω=2σtechVt=0; ω2Δtτω1/2.
NEA=2/frep1/2στ,enscτ¯2.
1τωc=1τemptyc+nSfω
σnSnSσττ P-1/2.

Metrics