Abstract

Sodium fluorescence induced by a narrow-bandwidth tunable laser has been used to measure temperature, pressure, axial velocity, and species concentrations in wind tunnels, rocket engine exhausts, and the upper atmosphere. Optical pumping of the ground states of the sodium, however, can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating such measurements. Here a straightforward extension of rate equations originally proposed to account for the features of the pumped spectrum is used to make temperature measurements from spectra taken in pumped vapor. Also determined from the spectrum is the relative fluorescence cycle number, which has application to measurement of diffusion rate and transverse flow velocity. The accuracy of both the temperature and the cycle-number measurements is comparable with that of temperature measurements made in the absence of pumping.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Miles, “Resonant Doppler velocimeter,” Phys. Fluids 18, 751–752 (1975).
    [CrossRef]
  2. M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
    [CrossRef]
  3. S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
    [CrossRef]
  4. C. W. Braiser, R. G. Porter, “Development of a laser-induced fluorescence system for application to rocket plumes,” (Arnold Engineering Development Center, Arnold Air Force Base, Tenn., 1993).
  5. K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
    [CrossRef]
  6. R. Walkup, A. Spielfiedel, W. D. Phillips, D. E. Pritchard, “Line-shape changes due to optical pumping of Na in buffer gas,” Phys. Rev. A 23, 1869–1873 (1981).
    [CrossRef]
  7. W. M. Fairbank, T. W. Hänsch, A. L. Schawlow, “Absolute measurement of very low sodium-vapor densities using laser induced fluorescence,” J. Opt. Soc. Am. 65, 199–204 (1975).
    [CrossRef]
  8. C. C. Dobson, C. C. Sung, “Laser induced optical pumping measurements of cross sections for fine and hyperfine structure transitions in sodium induced by collisions with helium and argon atoms,” Phys. Rev. A 59, 3402–3407 (1999).
    [CrossRef]
  9. C. C. Dobson, “Laser induced fluorescence measurements of thermal and statistical properties of a gas using optically pumped sodium vapor,” Ph.D. dissertation (University of Alabama at Huntsville, Huntsville, Ala., 1998).
  10. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1986).
  11. M. J. Jongerius, A. R. D. Van Bergen, T. J. Hollander, C. Th. Alkemade, “An experimental study of the collisional broadening of the Na-D lines by Ar, N2, and H2 perturbers in flames and vapor cells. I. The line core,” J. Quant. Spectrosc. Radiat. Transfer 25, 1–18 (1981).
    [CrossRef]
  12. D. G. McCartan, J. M. Farr, “Collisional broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985–994 (1976).
    [CrossRef]
  13. J. T. Fourkas, T. R. Brewer, H. Kim, M. D. Fayer, “Picosecond polarization-selective transient grating experiments in sodium-seeded flames,” J. Chem. Phys. 95, 5775–5784 (1991).
    [CrossRef]
  14. L. W. Anderson, A. T. Ramsey, “Study of the spin-relaxation times and the effects of spin-exchange collisions in an optically oriented sodium vapor,” Phys. Rev. 132, 712–723 (1963).
    [CrossRef]

1999 (1)

C. C. Dobson, C. C. Sung, “Laser induced optical pumping measurements of cross sections for fine and hyperfine structure transitions in sodium induced by collisions with helium and argon atoms,” Phys. Rev. A 59, 3402–3407 (1999).
[CrossRef]

1991 (1)

J. T. Fourkas, T. R. Brewer, H. Kim, M. D. Fayer, “Picosecond polarization-selective transient grating experiments in sodium-seeded flames,” J. Chem. Phys. 95, 5775–5784 (1991).
[CrossRef]

1985 (1)

K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

1983 (1)

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

1981 (2)

R. Walkup, A. Spielfiedel, W. D. Phillips, D. E. Pritchard, “Line-shape changes due to optical pumping of Na in buffer gas,” Phys. Rev. A 23, 1869–1873 (1981).
[CrossRef]

M. J. Jongerius, A. R. D. Van Bergen, T. J. Hollander, C. Th. Alkemade, “An experimental study of the collisional broadening of the Na-D lines by Ar, N2, and H2 perturbers in flames and vapor cells. I. The line core,” J. Quant. Spectrosc. Radiat. Transfer 25, 1–18 (1981).
[CrossRef]

1980 (1)

M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
[CrossRef]

1976 (1)

D. G. McCartan, J. M. Farr, “Collisional broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985–994 (1976).
[CrossRef]

1975 (2)

1963 (1)

L. W. Anderson, A. T. Ramsey, “Study of the spin-relaxation times and the effects of spin-exchange collisions in an optically oriented sodium vapor,” Phys. Rev. 132, 712–723 (1963).
[CrossRef]

Alkemade, C. Th.

M. J. Jongerius, A. R. D. Van Bergen, T. J. Hollander, C. Th. Alkemade, “An experimental study of the collisional broadening of the Na-D lines by Ar, N2, and H2 perturbers in flames and vapor cells. I. The line core,” J. Quant. Spectrosc. Radiat. Transfer 25, 1–18 (1981).
[CrossRef]

Anderson, L. W.

L. W. Anderson, A. T. Ramsey, “Study of the spin-relaxation times and the effects of spin-exchange collisions in an optically oriented sodium vapor,” Phys. Rev. 132, 712–723 (1963).
[CrossRef]

Braiser, C. W.

C. W. Braiser, R. G. Porter, “Development of a laser-induced fluorescence system for application to rocket plumes,” (Arnold Engineering Development Center, Arnold Air Force Base, Tenn., 1993).

Brewer, T. R.

J. T. Fourkas, T. R. Brewer, H. Kim, M. D. Fayer, “Picosecond polarization-selective transient grating experiments in sodium-seeded flames,” J. Chem. Phys. 95, 5775–5784 (1991).
[CrossRef]

Cheng, S.

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

Dobson, C. C.

C. C. Dobson, C. C. Sung, “Laser induced optical pumping measurements of cross sections for fine and hyperfine structure transitions in sodium induced by collisions with helium and argon atoms,” Phys. Rev. A 59, 3402–3407 (1999).
[CrossRef]

C. C. Dobson, “Laser induced fluorescence measurements of thermal and statistical properties of a gas using optically pumped sodium vapor,” Ph.D. dissertation (University of Alabama at Huntsville, Huntsville, Ala., 1998).

Fairbank, W. M.

Farr, J. M.

D. G. McCartan, J. M. Farr, “Collisional broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985–994 (1976).
[CrossRef]

Fayer, M. D.

J. T. Fourkas, T. R. Brewer, H. Kim, M. D. Fayer, “Picosecond polarization-selective transient grating experiments in sodium-seeded flames,” J. Chem. Phys. 95, 5775–5784 (1991).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1986).

Fourkas, J. T.

J. T. Fourkas, T. R. Brewer, H. Kim, M. D. Fayer, “Picosecond polarization-selective transient grating experiments in sodium-seeded flames,” J. Chem. Phys. 95, 5775–5784 (1991).
[CrossRef]

Fricke, K. H.

K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Hänsch, T. W.

Hollander, T. J.

M. J. Jongerius, A. R. D. Van Bergen, T. J. Hollander, C. Th. Alkemade, “An experimental study of the collisional broadening of the Na-D lines by Ar, N2, and H2 perturbers in flames and vapor cells. I. The line core,” J. Quant. Spectrosc. Radiat. Transfer 25, 1–18 (1981).
[CrossRef]

Jongerius, M. J.

M. J. Jongerius, A. R. D. Van Bergen, T. J. Hollander, C. Th. Alkemade, “An experimental study of the collisional broadening of the Na-D lines by Ar, N2, and H2 perturbers in flames and vapor cells. I. The line core,” J. Quant. Spectrosc. Radiat. Transfer 25, 1–18 (1981).
[CrossRef]

Kim, H.

J. T. Fourkas, T. R. Brewer, H. Kim, M. D. Fayer, “Picosecond polarization-selective transient grating experiments in sodium-seeded flames,” J. Chem. Phys. 95, 5775–5784 (1991).
[CrossRef]

McCartan, D. G.

D. G. McCartan, J. M. Farr, “Collisional broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985–994 (1976).
[CrossRef]

Miles, R. B.

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
[CrossRef]

R. B. Miles, “Resonant Doppler velocimeter,” Phys. Fluids 18, 751–752 (1975).
[CrossRef]

Phillips, W. D.

R. Walkup, A. Spielfiedel, W. D. Phillips, D. E. Pritchard, “Line-shape changes due to optical pumping of Na in buffer gas,” Phys. Rev. A 23, 1869–1873 (1981).
[CrossRef]

Porter, R. G.

C. W. Braiser, R. G. Porter, “Development of a laser-induced fluorescence system for application to rocket plumes,” (Arnold Engineering Development Center, Arnold Air Force Base, Tenn., 1993).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1986).

Pritchard, D. E.

R. Walkup, A. Spielfiedel, W. D. Phillips, D. E. Pritchard, “Line-shape changes due to optical pumping of Na in buffer gas,” Phys. Rev. A 23, 1869–1873 (1981).
[CrossRef]

Ramsey, A. T.

L. W. Anderson, A. T. Ramsey, “Study of the spin-relaxation times and the effects of spin-exchange collisions in an optically oriented sodium vapor,” Phys. Rev. 132, 712–723 (1963).
[CrossRef]

Schawlow, A. L.

Spielfiedel, A.

R. Walkup, A. Spielfiedel, W. D. Phillips, D. E. Pritchard, “Line-shape changes due to optical pumping of Na in buffer gas,” Phys. Rev. A 23, 1869–1873 (1981).
[CrossRef]

Sung, C. C.

C. C. Dobson, C. C. Sung, “Laser induced optical pumping measurements of cross sections for fine and hyperfine structure transitions in sodium induced by collisions with helium and argon atoms,” Phys. Rev. A 59, 3402–3407 (1999).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1986).

Van Bergen, A. R. D.

M. J. Jongerius, A. R. D. Van Bergen, T. J. Hollander, C. Th. Alkemade, “An experimental study of the collisional broadening of the Na-D lines by Ar, N2, and H2 perturbers in flames and vapor cells. I. The line core,” J. Quant. Spectrosc. Radiat. Transfer 25, 1–18 (1981).
[CrossRef]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1986).

von Zahn, U.

K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

Walkup, R.

R. Walkup, A. Spielfiedel, W. D. Phillips, D. E. Pritchard, “Line-shape changes due to optical pumping of Na in buffer gas,” Phys. Rev. A 23, 1869–1873 (1981).
[CrossRef]

Zimmermann, M.

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
[CrossRef]

Appl. Phys. Lett. (2)

M. Zimmermann, R. B. Miles, “Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 37, 885–887 (1980).
[CrossRef]

S. Cheng, M. Zimmermann, R. B. Miles, “Supersonic-nitrogen flow-field measurements with the resonant Doppler velocimeter,” Appl. Phys. Lett. 43, 143–145 (1983).
[CrossRef]

J. Atmos. Terr. Phys. (1)

K. H. Fricke, U. von Zahn, “Mesopause temperatures derived from probing the hyperfine structure of the D2 resonance line of sodium by lidar,” J. Atmos. Terr. Phys. 47, 499–512 (1985).
[CrossRef]

J. Chem. Phys. (1)

J. T. Fourkas, T. R. Brewer, H. Kim, M. D. Fayer, “Picosecond polarization-selective transient grating experiments in sodium-seeded flames,” J. Chem. Phys. 95, 5775–5784 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. B (1)

D. G. McCartan, J. M. Farr, “Collisional broadening of the sodium resonance lines by noble gases,” J. Phys. B 9, 985–994 (1976).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. J. Jongerius, A. R. D. Van Bergen, T. J. Hollander, C. Th. Alkemade, “An experimental study of the collisional broadening of the Na-D lines by Ar, N2, and H2 perturbers in flames and vapor cells. I. The line core,” J. Quant. Spectrosc. Radiat. Transfer 25, 1–18 (1981).
[CrossRef]

Phys. Fluids (1)

R. B. Miles, “Resonant Doppler velocimeter,” Phys. Fluids 18, 751–752 (1975).
[CrossRef]

Phys. Rev. (1)

L. W. Anderson, A. T. Ramsey, “Study of the spin-relaxation times and the effects of spin-exchange collisions in an optically oriented sodium vapor,” Phys. Rev. 132, 712–723 (1963).
[CrossRef]

Phys. Rev. A (2)

C. C. Dobson, C. C. Sung, “Laser induced optical pumping measurements of cross sections for fine and hyperfine structure transitions in sodium induced by collisions with helium and argon atoms,” Phys. Rev. A 59, 3402–3407 (1999).
[CrossRef]

R. Walkup, A. Spielfiedel, W. D. Phillips, D. E. Pritchard, “Line-shape changes due to optical pumping of Na in buffer gas,” Phys. Rev. A 23, 1869–1873 (1981).
[CrossRef]

Other (3)

C. W. Braiser, R. G. Porter, “Development of a laser-induced fluorescence system for application to rocket plumes,” (Arnold Engineering Development Center, Arnold Air Force Base, Tenn., 1993).

C. C. Dobson, “Laser induced fluorescence measurements of thermal and statistical properties of a gas using optically pumped sodium vapor,” Ph.D. dissertation (University of Alabama at Huntsville, Huntsville, Ala., 1998).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the laboratory apparatus: O-scopes, oscilloscopes; PMT’s, photomultiplier tubes.

Fig. 2
Fig. 2

Temperature fitting of a sodium D1 spectrum in helium. The discrete points are the experimental spectrum, and the solid curve is the theoretical spectrum. Final values for temperature and cycle number were 477.5 K and 4.08, respectively. The thermocouple temperature was 490.4 ± 3 K.

Fig. 3
Fig. 3

Temperature errors for fitting of experimental sodium spectra in helium. Temperature and cycle number were the determining fit parameters. (a) D1 fittings: | δT¯ | = 3.1%, δT¯ = -2.4%. (b) D2 fittings: | δT¯ | = 5.0%, δT¯ = -3.7%.

Fig. 4
Fig. 4

Temperature errors for fitting of experimental sodium spectra in argon. Temperature and cycle number were the determining fit parameters. The diamonds and circles represent spectra fitted with the nominal, fixed, frequency scale; the squares, which denote the same spectra as the circles, give results for fittings with frequency scale as a fit parameter. (a) D1: ◇, | δT¯ | = 2.9%, δT¯ = +1.6%; □, | δT¯ | = 2.8%, δT¯ = -0.8%; ○, | δT¯ | = 13% = - δT¯. (b) D2: ◇, | δT¯ | = 4.1%, δT¯ = -2.9%; □, | δT¯ | = 3.2%, δT¯ = +1.5%; ○, | δT¯ | = 11% = - δT¯.

Fig. 5
Fig. 5

Sensitivity of the excitation spectrum to cycle number as a function of cycle number. The fractional rms difference between a pair of spectra, Δ̂ from Eq. (5) [and Eq. (3)], is plotted as a function of ρ. The difference in ρ between the two spectra in a pair is ∼20%. The calculations are for helium at 475 K and 0.5 Torr.

Fig. 6
Fig. 6

Sodium cycle-number measurements in helium. The number of fluorescence cycles per atom in the laser beam is determined from spectrum fitting. This cycle number is proportional to the laser power and yields the value P 0,T , which is plotted against a direct measurement of the laser power P 0,E . Slope variation is due primarily to gain changes in the photodetector. (a) D1: δP0,T¯ = 3.6%. (b) D2: δP0,T¯ = 2.9%. (For clarity, p = 340 mT data have been shifted to the right 1.0 unit.)

Fig. 7
Fig. 7

Sodium cycle-number measurements in argon. The number of fluorescence cycles per atom in the laser beam is determined from spectrum fitting. This cycle number is proportional to the laser power and yields the value P 0,T , which is plotted against a direct measurement of the laser power P 0,E . Slope variation is due primarily to gain changes in the photodetector. (a) D1: δP0,T¯ = 3.4%. (b) D2: δP0,T¯ = 3.6%. (For clarity, p = 105 and p = 390 mT data have been shifted to the right 0.5 and 1.0 units, respectively.)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ρβijν/Dmax,
fT=fTνn; T, p, ρ,
ΔT,E=n=1N wnfEνn-fTνn; T, p, ρ2,
δTTNa-TTC/TTC,
Δˆ1N ΔT1,T21Nn=1N fT1νn-1,
ρ=P0/D0BSPJV0c-1,
D0=γT3/2p-1,
ρ=P0υd BSPJV0c-1,
P0,Ta1P0,E+a0.
δP0,T1Nn=1N1-P0,T,na1P0,E,n+a0,

Metrics