Abstract

For many cases modeled and measured UV global irradiances agree to within ±5% for cloudless conditions, provided that all relevant parameters for describing the atmosphere and the surface are well known. However, for conditions with snow-covered surfaces this agreement is usually not achievable, because on the one hand the regional albedo, which has to be used in a model, is only rarely available and on the other hand UV irradiance alters with different snow cover of the surface by as much as 50%. Therefore a method is given to determine the regional albedo values for conditions with snow cover by use of a parameterization on the basis of snow depth and snow age, routinely monitored by the weather services. An algorithm is evolved by multiple linear regression between the snow data and snow-albedo values in the UV, which are determined from a best fit of modeled and measured UV irradiances for an alpine site in Europe. The resulting regional albedo values in the case of snow are in the 0.18–0.5 range. Since the constants of the regression depend on the area conditions, they have to be adapted if the method is applied for other sites. Using the algorithm for actual cases with different snow conditions improves the accuracy of modeled UV irradiances considerably. Compared with the use of an average, constant snow albedo, the use of actual albedo values, provided by the algorithm, halves the average deviations between measured and modeled UV global irradiances.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Köhler, W. Vandersee, P. Winkler, “Spektrale und integrale Messungen der UV-B-Strahlung im Vergleich zu Ozonmessungen,” (Deutscher Wetterdienst, Meteorologische Observatorium, Hohenpeissenberg, 1995).
  2. S. Chandra, C. Varotsos, L. E. Flynn, “The mid-latitude total ozone trends in the northern hemisphere,” Geophys. Res. Lett. 23, 555–558 (1996).
    [CrossRef]
  3. D. T. Shindell, D. Rind, P. Lonergan, “Increased stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations,” Nature (London) 392, 589–592 (1998).
    [CrossRef]
  4. M. Dameris, V. Grewe, R. Hein, C. Schnadt, C. Brühl, B. Steil, “Assessment of the future development of the ozone layer,” Geophys. Res. Lett. 25, 3579–3582 (1998).
    [CrossRef]
  5. A. Ruggaber, R. Dlugi, T. Nakajima, “Modelling radiation quantities and photolysis frequencies in the troposphere,” J. Atmos. Chem. 18, 171–210 (1994).
    [CrossRef]
  6. T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
    [CrossRef]
  7. H. Schwander, P. Koepke, A. Ruggaber, “Uncertainties in modeled UV-irradiances due to limited accuracy and availability of input data,” J. Geophys. Res. 102, 9419–9429 (1997).
    [CrossRef]
  8. M. Blumthaler, W. Ambach, “Solar UVB-albedo of various surfaces,” Photochem. Photobiol. 48, 85–88 (1988).
    [CrossRef] [PubMed]
  9. S. Madronich, “UV radiation in the natural and perturbed atmosphere,” in UV-B Radiation and Ozone Depletion, Effects on Humans, Animals, Plants, Microorganisms, and Materials, M. Tevini, ed. (Lewis Publishers, Boca Raton, Fla., 1993), pp. 17–71.
  10. D. D. Doda, A. E. S. Green, “Surface reflectance measurements in the UV from an airborne platform. Part 1,” Appl. Opt. 19, 2140–2145 (1980);“Surface reflectance measurements in the ultraviolet from an airborne platform. Part 2,” Appl. Opt. 20, 636–642 (1980).
    [CrossRef] [PubMed]
  11. R. L. McKenzie, M. Kotcamp, W. Ireland, “Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand,” Geophys. Res. Lett. 23, 1757–1760 (1996).
    [CrossRef]
  12. T. C. Grenfell, S. G. Warren, P. C. Mullen, “Reflection of solar radiation by the antarctic snow surface at ultraviolet, visible and near-infrared wavelengths,” J. Geophys. Res. 99, 18,669–18,684 (1994).
    [CrossRef]
  13. P. Chýlek, V. Ramaswamy, V. Srivastava, “Albedo of soot-contaminated snow,” J. Geophys. Res. 88, 10,837–10,843 (1983).
    [CrossRef]
  14. F. D. Eaton, I. Dirmhirn, “Reflected irradiance indicatrices of normal surfaces and their effect on albedo,” Appl. Opt. 18, 994–1008 (1979).
    [CrossRef] [PubMed]
  15. M. Deguenther, R. Meerkoetter, A. Albold, G. Seckmeyer, “Case study on the influence of inhomogeneous surface albedo on UV irradiance,” Geophys. Res. Lett. 25, 3587–3590 (1998).
    [CrossRef]
  16. P. Wang, J. Lenoble, “Comparison between measurements and modeling of UV-B irradiance for clear sky: a case study,” Appl. Opt. 33, 3964–3971 (1994).
    [CrossRef] [PubMed]
  17. J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
    [CrossRef]
  18. B. Mayer, G. Seckmeyer, A. Kylling, “Systematic long-term comparison of spectral UV measurements and UVSPEC modeling results,” J. Geophys. Res. 102, 8755–8767 (1997).
    [CrossRef]
  19. B. Mayer, G. Seckmeyer, “Retrieving ozone columns from spectral direct and global UV irradiance measurements,” presented at the XVIII Quadrennial Ozone Symposium, University of L’Aquila, L’Aquila, Italy, 12–21 September 1996.
  20. M. VanHoosier (Naval Research Laboratory, Washington, D.C., personal communication, 1996). The solar spectrum is available by ftp from ftp://susim.nrl.navy.mil/pub/atlas3 .
  21. B. Mayer, “Messung und Modellierung der spektralen UV-Bestrahlungsstärke in Garmisch-Partenkirchen,” (Fraunhofer Institute for Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany, 1997).
  22. J. Herman, R. L. McKenzie, S. B. Diaz, J. B. Kerr, G. Seckmeyer, “Surface ultraviolet radiation,” in Scientific Assessment of Ozone Depletion 1998, (United NationsEnvironmental Program, P.O. Box 30552, Nairobi, Kenya, 1998), Chap. 9.
  23. W. Ambach, H. Eisner, “Albedo verschiedener Schneeoberflächen für erythemwirksame solare Strahlung,” Wetter Leben 38, 1–4 (1986).
  24. A. Sen, M. Srivastava (Regression Analysis, Theory, Methods and ApplicationsSpringer, New York, 1994).

1998

D. T. Shindell, D. Rind, P. Lonergan, “Increased stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations,” Nature (London) 392, 589–592 (1998).
[CrossRef]

M. Dameris, V. Grewe, R. Hein, C. Schnadt, C. Brühl, B. Steil, “Assessment of the future development of the ozone layer,” Geophys. Res. Lett. 25, 3579–3582 (1998).
[CrossRef]

M. Deguenther, R. Meerkoetter, A. Albold, G. Seckmeyer, “Case study on the influence of inhomogeneous surface albedo on UV irradiance,” Geophys. Res. Lett. 25, 3587–3590 (1998).
[CrossRef]

1997

H. Schwander, P. Koepke, A. Ruggaber, “Uncertainties in modeled UV-irradiances due to limited accuracy and availability of input data,” J. Geophys. Res. 102, 9419–9429 (1997).
[CrossRef]

B. Mayer, G. Seckmeyer, A. Kylling, “Systematic long-term comparison of spectral UV measurements and UVSPEC modeling results,” J. Geophys. Res. 102, 8755–8767 (1997).
[CrossRef]

1996

S. Chandra, C. Varotsos, L. E. Flynn, “The mid-latitude total ozone trends in the northern hemisphere,” Geophys. Res. Lett. 23, 555–558 (1996).
[CrossRef]

R. L. McKenzie, M. Kotcamp, W. Ireland, “Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand,” Geophys. Res. Lett. 23, 1757–1760 (1996).
[CrossRef]

1994

T. C. Grenfell, S. G. Warren, P. C. Mullen, “Reflection of solar radiation by the antarctic snow surface at ultraviolet, visible and near-infrared wavelengths,” J. Geophys. Res. 99, 18,669–18,684 (1994).
[CrossRef]

A. Ruggaber, R. Dlugi, T. Nakajima, “Modelling radiation quantities and photolysis frequencies in the troposphere,” J. Atmos. Chem. 18, 171–210 (1994).
[CrossRef]

P. Wang, J. Lenoble, “Comparison between measurements and modeling of UV-B irradiance for clear sky: a case study,” Appl. Opt. 33, 3964–3971 (1994).
[CrossRef] [PubMed]

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

1988

M. Blumthaler, W. Ambach, “Solar UVB-albedo of various surfaces,” Photochem. Photobiol. 48, 85–88 (1988).
[CrossRef] [PubMed]

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

1986

W. Ambach, H. Eisner, “Albedo verschiedener Schneeoberflächen für erythemwirksame solare Strahlung,” Wetter Leben 38, 1–4 (1986).

1983

P. Chýlek, V. Ramaswamy, V. Srivastava, “Albedo of soot-contaminated snow,” J. Geophys. Res. 88, 10,837–10,843 (1983).
[CrossRef]

1980

1979

Albold, A.

M. Deguenther, R. Meerkoetter, A. Albold, G. Seckmeyer, “Case study on the influence of inhomogeneous surface albedo on UV irradiance,” Geophys. Res. Lett. 25, 3587–3590 (1998).
[CrossRef]

Ambach, W.

M. Blumthaler, W. Ambach, “Solar UVB-albedo of various surfaces,” Photochem. Photobiol. 48, 85–88 (1988).
[CrossRef] [PubMed]

W. Ambach, H. Eisner, “Albedo verschiedener Schneeoberflächen für erythemwirksame solare Strahlung,” Wetter Leben 38, 1–4 (1986).

Blumthaler, M.

M. Blumthaler, W. Ambach, “Solar UVB-albedo of various surfaces,” Photochem. Photobiol. 48, 85–88 (1988).
[CrossRef] [PubMed]

Brühl, C.

M. Dameris, V. Grewe, R. Hein, C. Schnadt, C. Brühl, B. Steil, “Assessment of the future development of the ozone layer,” Geophys. Res. Lett. 25, 3579–3582 (1998).
[CrossRef]

Chandra, S.

S. Chandra, C. Varotsos, L. E. Flynn, “The mid-latitude total ozone trends in the northern hemisphere,” Geophys. Res. Lett. 23, 555–558 (1996).
[CrossRef]

Chýlek, P.

P. Chýlek, V. Ramaswamy, V. Srivastava, “Albedo of soot-contaminated snow,” J. Geophys. Res. 88, 10,837–10,843 (1983).
[CrossRef]

Dameris, M.

M. Dameris, V. Grewe, R. Hein, C. Schnadt, C. Brühl, B. Steil, “Assessment of the future development of the ozone layer,” Geophys. Res. Lett. 25, 3579–3582 (1998).
[CrossRef]

Deguenther, M.

M. Deguenther, R. Meerkoetter, A. Albold, G. Seckmeyer, “Case study on the influence of inhomogeneous surface albedo on UV irradiance,” Geophys. Res. Lett. 25, 3587–3590 (1998).
[CrossRef]

Diaz, S. B.

J. Herman, R. L. McKenzie, S. B. Diaz, J. B. Kerr, G. Seckmeyer, “Surface ultraviolet radiation,” in Scientific Assessment of Ozone Depletion 1998, (United NationsEnvironmental Program, P.O. Box 30552, Nairobi, Kenya, 1998), Chap. 9.

Dirmhirn, I.

Dlugi, R.

A. Ruggaber, R. Dlugi, T. Nakajima, “Modelling radiation quantities and photolysis frequencies in the troposphere,” J. Atmos. Chem. 18, 171–210 (1994).
[CrossRef]

Doda, D. D.

Eaton, F. D.

Eisner, H.

W. Ambach, H. Eisner, “Albedo verschiedener Schneeoberflächen für erythemwirksame solare Strahlung,” Wetter Leben 38, 1–4 (1986).

Flynn, L. E.

S. Chandra, C. Varotsos, L. E. Flynn, “The mid-latitude total ozone trends in the northern hemisphere,” Geophys. Res. Lett. 23, 555–558 (1996).
[CrossRef]

Green, A. E. S.

Grenfell, T. C.

T. C. Grenfell, S. G. Warren, P. C. Mullen, “Reflection of solar radiation by the antarctic snow surface at ultraviolet, visible and near-infrared wavelengths,” J. Geophys. Res. 99, 18,669–18,684 (1994).
[CrossRef]

Grewe, V.

M. Dameris, V. Grewe, R. Hein, C. Schnadt, C. Brühl, B. Steil, “Assessment of the future development of the ozone layer,” Geophys. Res. Lett. 25, 3579–3582 (1998).
[CrossRef]

Hein, R.

M. Dameris, V. Grewe, R. Hein, C. Schnadt, C. Brühl, B. Steil, “Assessment of the future development of the ozone layer,” Geophys. Res. Lett. 25, 3579–3582 (1998).
[CrossRef]

Herman, J.

J. Herman, R. L. McKenzie, S. B. Diaz, J. B. Kerr, G. Seckmeyer, “Surface ultraviolet radiation,” in Scientific Assessment of Ozone Depletion 1998, (United NationsEnvironmental Program, P.O. Box 30552, Nairobi, Kenya, 1998), Chap. 9.

Ireland, W.

R. L. McKenzie, M. Kotcamp, W. Ireland, “Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand,” Geophys. Res. Lett. 23, 1757–1760 (1996).
[CrossRef]

Kerr, J. B.

J. Herman, R. L. McKenzie, S. B. Diaz, J. B. Kerr, G. Seckmeyer, “Surface ultraviolet radiation,” in Scientific Assessment of Ozone Depletion 1998, (United NationsEnvironmental Program, P.O. Box 30552, Nairobi, Kenya, 1998), Chap. 9.

Koepke, P.

H. Schwander, P. Koepke, A. Ruggaber, “Uncertainties in modeled UV-irradiances due to limited accuracy and availability of input data,” J. Geophys. Res. 102, 9419–9429 (1997).
[CrossRef]

Köhler, U.

U. Köhler, W. Vandersee, P. Winkler, “Spektrale und integrale Messungen der UV-B-Strahlung im Vergleich zu Ozonmessungen,” (Deutscher Wetterdienst, Meteorologische Observatorium, Hohenpeissenberg, 1995).

Kotcamp, M.

R. L. McKenzie, M. Kotcamp, W. Ireland, “Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand,” Geophys. Res. Lett. 23, 1757–1760 (1996).
[CrossRef]

Kylling, A.

B. Mayer, G. Seckmeyer, A. Kylling, “Systematic long-term comparison of spectral UV measurements and UVSPEC modeling results,” J. Geophys. Res. 102, 8755–8767 (1997).
[CrossRef]

Lenoble, J.

Lonergan, P.

D. T. Shindell, D. Rind, P. Lonergan, “Increased stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations,” Nature (London) 392, 589–592 (1998).
[CrossRef]

Madronich, S.

S. Madronich, “UV radiation in the natural and perturbed atmosphere,” in UV-B Radiation and Ozone Depletion, Effects on Humans, Animals, Plants, Microorganisms, and Materials, M. Tevini, ed. (Lewis Publishers, Boca Raton, Fla., 1993), pp. 17–71.

Mayer, B.

B. Mayer, G. Seckmeyer, A. Kylling, “Systematic long-term comparison of spectral UV measurements and UVSPEC modeling results,” J. Geophys. Res. 102, 8755–8767 (1997).
[CrossRef]

B. Mayer, “Messung und Modellierung der spektralen UV-Bestrahlungsstärke in Garmisch-Partenkirchen,” (Fraunhofer Institute for Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany, 1997).

B. Mayer, G. Seckmeyer, “Retrieving ozone columns from spectral direct and global UV irradiance measurements,” presented at the XVIII Quadrennial Ozone Symposium, University of L’Aquila, L’Aquila, Italy, 12–21 September 1996.

McKenzie, R.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

McKenzie, R. L.

R. L. McKenzie, M. Kotcamp, W. Ireland, “Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand,” Geophys. Res. Lett. 23, 1757–1760 (1996).
[CrossRef]

J. Herman, R. L. McKenzie, S. B. Diaz, J. B. Kerr, G. Seckmeyer, “Surface ultraviolet radiation,” in Scientific Assessment of Ozone Depletion 1998, (United NationsEnvironmental Program, P.O. Box 30552, Nairobi, Kenya, 1998), Chap. 9.

Meerkoetter, R.

M. Deguenther, R. Meerkoetter, A. Albold, G. Seckmeyer, “Case study on the influence of inhomogeneous surface albedo on UV irradiance,” Geophys. Res. Lett. 25, 3587–3590 (1998).
[CrossRef]

Mullen, P. C.

T. C. Grenfell, S. G. Warren, P. C. Mullen, “Reflection of solar radiation by the antarctic snow surface at ultraviolet, visible and near-infrared wavelengths,” J. Geophys. Res. 99, 18,669–18,684 (1994).
[CrossRef]

Nakajima, T.

A. Ruggaber, R. Dlugi, T. Nakajima, “Modelling radiation quantities and photolysis frequencies in the troposphere,” J. Atmos. Chem. 18, 171–210 (1994).
[CrossRef]

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

Ramaswamy, V.

P. Chýlek, V. Ramaswamy, V. Srivastava, “Albedo of soot-contaminated snow,” J. Geophys. Res. 88, 10,837–10,843 (1983).
[CrossRef]

Rind, D.

D. T. Shindell, D. Rind, P. Lonergan, “Increased stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations,” Nature (London) 392, 589–592 (1998).
[CrossRef]

Rosen, J.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

Ruggaber, A.

H. Schwander, P. Koepke, A. Ruggaber, “Uncertainties in modeled UV-irradiances due to limited accuracy and availability of input data,” J. Geophys. Res. 102, 9419–9429 (1997).
[CrossRef]

A. Ruggaber, R. Dlugi, T. Nakajima, “Modelling radiation quantities and photolysis frequencies in the troposphere,” J. Atmos. Chem. 18, 171–210 (1994).
[CrossRef]

Schnadt, C.

M. Dameris, V. Grewe, R. Hein, C. Schnadt, C. Brühl, B. Steil, “Assessment of the future development of the ozone layer,” Geophys. Res. Lett. 25, 3579–3582 (1998).
[CrossRef]

Schwander, H.

H. Schwander, P. Koepke, A. Ruggaber, “Uncertainties in modeled UV-irradiances due to limited accuracy and availability of input data,” J. Geophys. Res. 102, 9419–9429 (1997).
[CrossRef]

Seckmeyer, G.

M. Deguenther, R. Meerkoetter, A. Albold, G. Seckmeyer, “Case study on the influence of inhomogeneous surface albedo on UV irradiance,” Geophys. Res. Lett. 25, 3587–3590 (1998).
[CrossRef]

B. Mayer, G. Seckmeyer, A. Kylling, “Systematic long-term comparison of spectral UV measurements and UVSPEC modeling results,” J. Geophys. Res. 102, 8755–8767 (1997).
[CrossRef]

J. Herman, R. L. McKenzie, S. B. Diaz, J. B. Kerr, G. Seckmeyer, “Surface ultraviolet radiation,” in Scientific Assessment of Ozone Depletion 1998, (United NationsEnvironmental Program, P.O. Box 30552, Nairobi, Kenya, 1998), Chap. 9.

B. Mayer, G. Seckmeyer, “Retrieving ozone columns from spectral direct and global UV irradiance measurements,” presented at the XVIII Quadrennial Ozone Symposium, University of L’Aquila, L’Aquila, Italy, 12–21 September 1996.

Sen, A.

A. Sen, M. Srivastava (Regression Analysis, Theory, Methods and ApplicationsSpringer, New York, 1994).

Shindell, D. T.

D. T. Shindell, D. Rind, P. Lonergan, “Increased stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations,” Nature (London) 392, 589–592 (1998).
[CrossRef]

Srivastava, M.

A. Sen, M. Srivastava (Regression Analysis, Theory, Methods and ApplicationsSpringer, New York, 1994).

Srivastava, V.

P. Chýlek, V. Ramaswamy, V. Srivastava, “Albedo of soot-contaminated snow,” J. Geophys. Res. 88, 10,837–10,843 (1983).
[CrossRef]

Stamnes, K.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

Steil, B.

M. Dameris, V. Grewe, R. Hein, C. Schnadt, C. Brühl, B. Steil, “Assessment of the future development of the ozone layer,” Geophys. Res. Lett. 25, 3579–3582 (1998).
[CrossRef]

Tanaka, M.

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

Vandersee, W.

U. Köhler, W. Vandersee, P. Winkler, “Spektrale und integrale Messungen der UV-B-Strahlung im Vergleich zu Ozonmessungen,” (Deutscher Wetterdienst, Meteorologische Observatorium, Hohenpeissenberg, 1995).

VanHoosier, M.

M. VanHoosier (Naval Research Laboratory, Washington, D.C., personal communication, 1996). The solar spectrum is available by ftp from ftp://susim.nrl.navy.mil/pub/atlas3 .

Varotsos, C.

S. Chandra, C. Varotsos, L. E. Flynn, “The mid-latitude total ozone trends in the northern hemisphere,” Geophys. Res. Lett. 23, 555–558 (1996).
[CrossRef]

Wang, P.

Warren, S. G.

T. C. Grenfell, S. G. Warren, P. C. Mullen, “Reflection of solar radiation by the antarctic snow surface at ultraviolet, visible and near-infrared wavelengths,” J. Geophys. Res. 99, 18,669–18,684 (1994).
[CrossRef]

Wineland, M.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

Winkler, P.

U. Köhler, W. Vandersee, P. Winkler, “Spektrale und integrale Messungen der UV-B-Strahlung im Vergleich zu Ozonmessungen,” (Deutscher Wetterdienst, Meteorologische Observatorium, Hohenpeissenberg, 1995).

Zeng, J.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

Appl. Opt.

Geophys. Res. Lett.

M. Deguenther, R. Meerkoetter, A. Albold, G. Seckmeyer, “Case study on the influence of inhomogeneous surface albedo on UV irradiance,” Geophys. Res. Lett. 25, 3587–3590 (1998).
[CrossRef]

R. L. McKenzie, M. Kotcamp, W. Ireland, “Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand,” Geophys. Res. Lett. 23, 1757–1760 (1996).
[CrossRef]

S. Chandra, C. Varotsos, L. E. Flynn, “The mid-latitude total ozone trends in the northern hemisphere,” Geophys. Res. Lett. 23, 555–558 (1996).
[CrossRef]

M. Dameris, V. Grewe, R. Hein, C. Schnadt, C. Brühl, B. Steil, “Assessment of the future development of the ozone layer,” Geophys. Res. Lett. 25, 3579–3582 (1998).
[CrossRef]

J. Atmos. Chem.

A. Ruggaber, R. Dlugi, T. Nakajima, “Modelling radiation quantities and photolysis frequencies in the troposphere,” J. Atmos. Chem. 18, 171–210 (1994).
[CrossRef]

J. Geophys. Res.

T. C. Grenfell, S. G. Warren, P. C. Mullen, “Reflection of solar radiation by the antarctic snow surface at ultraviolet, visible and near-infrared wavelengths,” J. Geophys. Res. 99, 18,669–18,684 (1994).
[CrossRef]

P. Chýlek, V. Ramaswamy, V. Srivastava, “Albedo of soot-contaminated snow,” J. Geophys. Res. 88, 10,837–10,843 (1983).
[CrossRef]

H. Schwander, P. Koepke, A. Ruggaber, “Uncertainties in modeled UV-irradiances due to limited accuracy and availability of input data,” J. Geophys. Res. 102, 9419–9429 (1997).
[CrossRef]

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

B. Mayer, G. Seckmeyer, A. Kylling, “Systematic long-term comparison of spectral UV measurements and UVSPEC modeling results,” J. Geophys. Res. 102, 8755–8767 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

T. Nakajima, M. Tanaka, “Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation,” J. Quant. Spectrosc. Radiat. Transfer 40, 51–69 (1988).
[CrossRef]

Nature (London)

D. T. Shindell, D. Rind, P. Lonergan, “Increased stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations,” Nature (London) 392, 589–592 (1998).
[CrossRef]

Photochem. Photobiol.

M. Blumthaler, W. Ambach, “Solar UVB-albedo of various surfaces,” Photochem. Photobiol. 48, 85–88 (1988).
[CrossRef] [PubMed]

Wetter Leben

W. Ambach, H. Eisner, “Albedo verschiedener Schneeoberflächen für erythemwirksame solare Strahlung,” Wetter Leben 38, 1–4 (1986).

Other

A. Sen, M. Srivastava (Regression Analysis, Theory, Methods and ApplicationsSpringer, New York, 1994).

U. Köhler, W. Vandersee, P. Winkler, “Spektrale und integrale Messungen der UV-B-Strahlung im Vergleich zu Ozonmessungen,” (Deutscher Wetterdienst, Meteorologische Observatorium, Hohenpeissenberg, 1995).

S. Madronich, “UV radiation in the natural and perturbed atmosphere,” in UV-B Radiation and Ozone Depletion, Effects on Humans, Animals, Plants, Microorganisms, and Materials, M. Tevini, ed. (Lewis Publishers, Boca Raton, Fla., 1993), pp. 17–71.

B. Mayer, G. Seckmeyer, “Retrieving ozone columns from spectral direct and global UV irradiance measurements,” presented at the XVIII Quadrennial Ozone Symposium, University of L’Aquila, L’Aquila, Italy, 12–21 September 1996.

M. VanHoosier (Naval Research Laboratory, Washington, D.C., personal communication, 1996). The solar spectrum is available by ftp from ftp://susim.nrl.navy.mil/pub/atlas3 .

B. Mayer, “Messung und Modellierung der spektralen UV-Bestrahlungsstärke in Garmisch-Partenkirchen,” (Fraunhofer Institute for Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany, 1997).

J. Herman, R. L. McKenzie, S. B. Diaz, J. B. Kerr, G. Seckmeyer, “Surface ultraviolet radiation,” in Scientific Assessment of Ozone Depletion 1998, (United NationsEnvironmental Program, P.O. Box 30552, Nairobi, Kenya, 1998), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Increase of spectral UV global irradiance with surface albedo compared with albedo of 0.03. The atmosphere represents 300 DU ozone and low aerosol impact (aerosol optical depth of 0.1 at 550 nm).

Fig. 2
Fig. 2

Ratio between measured and modeled spectral UV global irradiance for three wavelengths (○, 310 nm; X, 342 nm; and ●, 380 nm) for cloudless and snow-free conditions.

Fig. 3
Fig. 3

Ratio between measured and modeled spectral UV global irradiance for three wavelengths (○, 310 nm; X, 342 nm; and ●, 380 nm) for cloudless conditions with present snow cover, with the albedo algorithm.

Fig. 4
Fig. 4

Ratio between measured and modeled spectral UV global irradiance for three wavelengths (○, 310 nm; X, 342 nm; and ●, 380 nm) for cloudless conditions with present snow cover, with a constant surface albedo of 0.38 for all modeled spectra.

Fig. 5
Fig. 5

Frequency distribution of absolute deviations between modeling and measurement in the UV-A wavelength range (average of the absolute deviations at 321, 342, and 380 nm) for cloud-free conditions with present snow cover (●, model calculations when the snow albedo algorithm was used; ○, calculations with a constant albedo of 0.38 for all spectra).

Tables (1)

Tables Icon

Table 1 Selected Albedo Values, Snow Depth, and Number of Days that Passed Since Last Fresh Fallen Snowa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E2-E1E1=0.4A2-A1.
A=0.40+1.72×10-3H-3.61×10-2N.
F=r21-r2n-k+1k,

Metrics