Abstract

We introduce, analyze, and experimentally demonstrate what to the best of our knowledge is a new pulse correlation technique that is capable of real-time conversion of a femtosecond pulse sequence into its spatial image. Our technique uses a grating at the entrance of the system, thus introducing a transverse time delay (TTD) into the transform-limited reference pulse. The shaped signal pulses and the TTD reference pulse are mixed in a nonlinear optical crystal (LiB3O5), thus producing a second-harmonic field that carries the spatial image of the temporal shaped signal pulse. We show that the time scaling of the system is set by the magnification of the anamorphic imaging system as well as by the grating frequency and that the time window of the system is set by the size of the grating aperture. Our experimental results show a time window of ∼20 ps. We also show that the chirp information of the shaped pulse can be recovered by measurement of the spectrum of the resulting second-harmonic field.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
    [CrossRef]
  2. E. A. De Souza, M. C. Nuss, W. H. Knox, D. A. B. Miller, “Wavelength division multiplexing with femtosecond pulses,” Opt. Lett. 20, 1166–1168 (1995).
    [CrossRef] [PubMed]
  3. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef] [PubMed]
  4. M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissue,” Opt. Lett. 18, 1107–1109 (1993).
    [CrossRef]
  5. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef] [PubMed]
  6. P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
    [CrossRef]
  7. M. Muller, J. Squier, G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20, 1038–1040 (1995).
    [CrossRef] [PubMed]
  8. S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
    [CrossRef] [PubMed]
  9. W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
    [CrossRef]
  10. F. Salin, P. Georges, G. Roger, A. Burn, “Single-shot measurement of a 52-fs pulse,” Appl. Opt. 26, 4528–4531 (1987).
    [CrossRef] [PubMed]
  11. C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.
  12. A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
    [CrossRef] [PubMed]
  13. K. Ema, “Real-time ultrashort pulse shaping and pulse-shape measurement using a dynamic grating,” Jpn. J. Appl. Phys. Lett. 30, 2046–2049 (1991).
    [CrossRef]
  14. K. B. Hill, D. J. Brady, “Pulse shaping in volume reflection holograms,” Opt. Lett. 18, 1739–1741 (1993).
    [CrossRef] [PubMed]
  15. M. M. Wefers, K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049 (1995).
    [CrossRef] [PubMed]
  16. Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
    [CrossRef]
  17. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Peak, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
    [CrossRef]
  18. M. C. Nuss, R. L. Morrison, “Time-domain images,” Opt. Lett. 20, 740–742 (1995).
    [CrossRef] [PubMed]
  19. P. C. Sun, Y. Mazurenko, W. S. C. Cheng, P. K. L. Yu, Y. Fainman, “All optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
    [CrossRef]
  20. K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
    [CrossRef]
  21. M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Patrovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
    [CrossRef] [PubMed]
  22. Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space-time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).
  23. Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 188, 594–600 (1995).
    [CrossRef]
  24. Yu. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Belyaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
    [CrossRef] [PubMed]
  25. P. C. Sun, Y. Mazurenko, Y. Fainman, “Femtosecond pulse imaging: ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14, 1159–1170 (1997).
    [CrossRef]
  26. J. Janzsky, G. Corradi, R. N. Gyuzalian, “On a possibility of analyzing the temporal characteristics of short light pulses,” Opt. Commun. 23, 293–298 (1977).
    [CrossRef]
  27. C. Rempel, W. Rudolph, “Single shot autocorrelator for femtosecond pulses,” Exp. Tech. Phys. (Berlin) 37, 381–385 (1988).
  28. R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
    [CrossRef]
  29. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996) Chap. 1, pp. 10–11.

1997 (1)

1996 (1)

1995 (8)

M. C. Nuss, R. L. Morrison, “Time-domain images,” Opt. Lett. 20, 740–742 (1995).
[CrossRef] [PubMed]

M. Muller, J. Squier, G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20, 1038–1040 (1995).
[CrossRef] [PubMed]

M. M. Wefers, K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049 (1995).
[CrossRef] [PubMed]

E. A. De Souza, M. C. Nuss, W. H. Knox, D. A. B. Miller, “Wavelength division multiplexing with femtosecond pulses,” Opt. Lett. 20, 1166–1168 (1995).
[CrossRef] [PubMed]

P. C. Sun, Y. Mazurenko, W. S. C. Cheng, P. K. L. Yu, Y. Fainman, “All optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
[CrossRef]

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space-time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 188, 594–600 (1995).
[CrossRef]

1994 (1)

1993 (4)

1992 (2)

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Peak, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

1991 (2)

1990 (4)

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
[CrossRef]

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

1988 (1)

C. Rempel, W. Rudolph, “Single shot autocorrelator for femtosecond pulses,” Exp. Tech. Phys. (Berlin) 37, 381–385 (1988).

1987 (1)

1981 (1)

R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[CrossRef]

1977 (1)

J. Janzsky, G. Corradi, R. N. Gyuzalian, “On a possibility of analyzing the temporal characteristics of short light pulses,” Opt. Commun. 23, 293–298 (1977).
[CrossRef]

Alfano, R. R.

Belyaev, A. G.

Yu. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Belyaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space-time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 188, 594–600 (1995).
[CrossRef]

Brady, D. J.

Brakenhoff, G. J.

Burn, A.

Chen, H.

Chen, Y.

Cheng, W. S. C.

Chiu, T. H.

Chizhov, S. A.

Colombeau, B.

C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Corradi, G.

J. Janzsky, G. Corradi, R. N. Gyuzalian, “On a possibility of analyzing the temporal characteristics of short light pulses,” Opt. Commun. 23, 293–298 (1977).
[CrossRef]

Cremer, C.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Dahlen, M.

W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
[CrossRef]

Das, B. B.

De Souza, E. A.

Diels, J.-C.

J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996) Chap. 1, pp. 10–11.

Dilworth, D.

Ema, K.

K. Ema, “Real-time ultrashort pulse shaping and pulse-shape measurement using a dynamic grating,” Jpn. J. Appl. Phys. Lett. 30, 2046–2049 (1991).
[CrossRef]

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

Fainman, Y.

Froehly, C.

C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Fujimoto, J. G.

Georges, P.

Gyuzalian, R. N.

J. Janzsky, G. Corradi, R. N. Gyuzalian, “On a possibility of analyzing the temporal characteristics of short light pulses,” Opt. Commun. 23, 293–298 (1977).
[CrossRef]

Hanninen, P. E.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Hee, M. R.

Hell, S. W.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Heritage, J. P.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Hill, K. B.

Izatt, J. A.

Janzsky, J.

J. Janzsky, G. Corradi, R. N. Gyuzalian, “On a possibility of analyzing the temporal characteristics of short light pulses,” Opt. Commun. 23, 293–298 (1977).
[CrossRef]

Knox, W. H.

Kuwata-Gonokami, M.

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

Leaird, D. E.

Leith, E.

Li, M.

Lopez, J.

Marinero, E. E.

R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[CrossRef]

Mazurenko, Y.

Mazurenko, Y. T.

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
[CrossRef]

Mazurenko, Yu. T.

Yu. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Belyaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space-time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 188, 594–600 (1995).
[CrossRef]

Miller, D. A. B.

Morrison, R. L.

Muller, M.

Nelson, K. A.

Nuss, M. C.

Patel, J. S.

Patrovi, A.

Peak, E. G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Peak, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

Putilin, S. E.

Yu. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Belyaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space-time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 188, 594–600 (1995).
[CrossRef]

Rabitz, H.

W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
[CrossRef]

Reitze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Peak, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

Rempel, C.

C. Rempel, W. Rudolph, “Single shot autocorrelator for femtosecond pulses,” Exp. Tech. Phys. (Berlin) 37, 381–385 (1988).

Rice, S. A.

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
[CrossRef] [PubMed]

Roger, G.

Rudolph, W.

C. Rempel, W. Rudolph, “Single shot autocorrelator for femtosecond pulses,” Exp. Tech. Phys. (Berlin) 37, 381–385 (1988).

J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996) Chap. 1, pp. 10–11.

Salehi, J. A.

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Salin, F.

Salo, A. J.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Shimizu, F.

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

Soini, E.

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

Spiro, A. G.

Yu. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Belyaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space-time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 188, 594–600 (1995).
[CrossRef]

Squier, J.

Sun, P. C.

Swanson, E. A.

Valdmanis, J.

Vampouille, M.

C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

Verkhovskij, E. B.

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 188, 594–600 (1995).
[CrossRef]

Warren, W. S.

W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
[CrossRef]

Wefers, M. M.

Weiner, A. M.

M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Patrovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Peak, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

Wullert, J. R.

Wyatt, R.

R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[CrossRef]

Yashin, V. E.

Yoo, K. M.

Yu, P. K. L.

Appl. Opt. (1)

Appl. Phys. (1)

R. Wyatt, E. E. Marinero, “Versatile single-shot background-free pulse duration measurement technique, for pulses of subnanosecond to picosecond duration,” Appl. Phys. 25, 297–301 (1981).
[CrossRef]

Appl. Phys. B (1)

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–113 (1990).
[CrossRef]

Appl. Phys. Lett. (2)

P. E. Hanninen, S. W. Hell, A. J. Salo, E. Soini, C. Cremer, “Two photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research,” Appl. Phys. Lett. 66, 1698–1700 (1995).
[CrossRef]

K. Ema, M. Kuwata-Gonokami, F. Shimizu, “All optical sub-Tbits/s serial-to-parallel conversion using excitonic giant nonlinearity,” Appl. Phys. Lett. 59, 2799–2801 (1990).
[CrossRef]

Exp. Tech. Phys. (Berlin) (1)

C. Rempel, W. Rudolph, “Single shot autocorrelator for femtosecond pulses,” Exp. Tech. Phys. (Berlin) 37, 381–385 (1988).

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Peak, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2253 (1992).
[CrossRef]

J. Lightwave Technol. (1)

J. A. Salehi, A. M. Weiner, J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwave Technol. 8, 478–491 (1990).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. Lett. (1)

K. Ema, “Real-time ultrashort pulse shaping and pulse-shape measurement using a dynamic grating,” Jpn. J. Appl. Phys. Lett. 30, 2046–2049 (1991).
[CrossRef]

Opt. Commun. (2)

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, E. B. Verkhovskij, “Time-to-space conversion of fast signals by the method of spectral nonlinear optics,” Opt. Commun. 188, 594–600 (1995).
[CrossRef]

J. Janzsky, G. Corradi, R. N. Gyuzalian, “On a possibility of analyzing the temporal characteristics of short light pulses,” Opt. Commun. 23, 293–298 (1977).
[CrossRef]

Opt. Lett. (12)

A. M. Weiner, D. E. Leaird, J. S. Patel, J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990).
[CrossRef] [PubMed]

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[CrossRef] [PubMed]

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, J. G. Fujimoto, “Femtosecond transillumination tomography in thick tissue,” Opt. Lett. 18, 1107–1109 (1993).
[CrossRef]

K. B. Hill, D. J. Brady, “Pulse shaping in volume reflection holograms,” Opt. Lett. 18, 1739–1741 (1993).
[CrossRef] [PubMed]

M. C. Nuss, M. Li, T. H. Chiu, A. M. Weiner, A. Patrovi, “Time-to-space mapping of femtosecond pulses,” Opt. Lett. 19, 664–666 (1994).
[CrossRef] [PubMed]

M. C. Nuss, R. L. Morrison, “Time-domain images,” Opt. Lett. 20, 740–742 (1995).
[CrossRef] [PubMed]

M. Muller, J. Squier, G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20, 1038–1040 (1995).
[CrossRef] [PubMed]

M. M. Wefers, K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20, 1047–1049 (1995).
[CrossRef] [PubMed]

E. A. De Souza, M. C. Nuss, W. H. Knox, D. A. B. Miller, “Wavelength division multiplexing with femtosecond pulses,” Opt. Lett. 20, 1166–1168 (1995).
[CrossRef] [PubMed]

P. C. Sun, Y. Mazurenko, W. S. C. Cheng, P. K. L. Yu, Y. Fainman, “All optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
[CrossRef]

Yu. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Belyaev, V. E. Yashin, S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[CrossRef] [PubMed]

Opt. Spectrosc. (USSR) (1)

Yu. T. Mazurenko, A. G. Spiro, S. E. Putilin, A. G. Belyaev, “Ultrafast space-time transformation of signals using spectral nonlinear optics,” Opt. Spectrosc. (USSR) 78, 122–128 (1995).

Science (2)

S. A. Rice, “New ideas for guiding the evolution of a quantum system,” Science 258, 412–413 (1992).
[CrossRef] [PubMed]

W. S. Warren, H. Rabitz, M. Dahlen, “Coherent control of quantum dynamics: the dream is alive,” Science 269, 1581–1589 (1993).
[CrossRef]

Other (2)

C. Froehly, B. Colombeau, M. Vampouille, “Shaping and analysis of picosecond light pulses,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1983), Vol. XX, pp. 65–153.

J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996) Chap. 1, pp. 10–11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of TTD correlation measurement. (a) The reference pulse diffracted from the grating surface is imaged by the anamorphic imaging system, thus producing a transverse time delay in space. The signal pulse is transmitted and imaged onto the same plane. The signal pulse and the reference pulse intersect in the nonlinear crystal and interact, thus producing the SH field. (b) Magnified view of the signal pulse and the reference pulse inside a SHG crystal in the image plane.

Fig. 2
Fig. 2

Schematic diagram of the experimental TTD time-domain pulse correlation system: The tilted time front is in the x direction, enabling the use of the y direction for optimizing the phase-matching conditions of the SHG process.

Fig. 3
Fig. 3

Calibration of the TTD-pulse correlation system. CCD image of the pulses that correspond to a delay of 2.3 ps (spatial delay in vcuum of 700 µm); the time-to-space conversion scale is 5.4 fs/pixel.

Fig. 4
Fig. 4

Comparison of measurements obtained with the TTD pulse correlation system and a commercial autocorrelator (Inrad Model 514BX).

Fig. 5
Fig. 5

CCD image of shaped pulses obtained with the TTD pulse correlation system: a sequence of three pulses obtained with a pulse shaper with a phase spectral filter that has three diffraction orders of equal amplitude.

Fig. 6
Fig. 6

CCD image of shaped pulses obtained with the TTD pulse correlation system: a sequence of pulses obtained with a pulse shaper with a Ronchi grating (50/50) spectral filter.

Fig. 7
Fig. 7

CCD image of shaped pulses obtained with the TTD pulse correlation system: a sequence of pulses—positive chirp, transform limited, and negative chirp—obtained with a pulse shaper with a 1-D diffractive lens spectral filter.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

rt=pt-t0expjωct,
Rω=Pω-ωcexp-jω-ωct0,
Rx; ω=Rωexp-j ω-ωcc αxwx,
rx; t=pt-t0-αxcwxexpjωct.
x=xf1/f2,
rx; t=pt-t0-αxcf1f2wx f1f2expjωct.
st=i Aipst-t0s-Δtiexpjωct,
ESHG=ηpt-t0-αxcf1f2wx f1f2×i Aipst-t0s-Δtiexpj2ωct,
xi=cΔti+t0s-t0αf2f1.
Δx=cΔtαf2f1,
st-t0s=exp-t-t0sqτch21+jaexpjωct,
Δντch=1πq1+a21/2.
τch=τT1+a21/2.
rt-t0-αxcf1f2=exp-t-t0-αxcf1f2qτT2×expjωct.
ESHG=η exp-t-t0sqτch2exp-t-t0-αxcf1f2qτT2×exp j2ωct-at-t0sqτch2.
ωinstt=2ωc-2a1+a2q2τT2t-t0s.
ASHGx=η - st-t0srt-t0-αxcf1f2dt=η - sTrT-αxcf1f2-t0+t0sdT,
Δw=2 cτsin θf2f1.
Δt=2παsFΔdωc,
τ=t1NCCD NFWHM,

Metrics