Abstract

New liquid-crystal media and photoconductor materials are being utilized in spatial light modulators to increase their resolution, diffraction efficiency, speed, and sensitivity. A prototypical device developed for real-time holography applications has shown an 8% diffraction efficiency from a holographic grating with a spatial frequency of 370 line pairs/mm (lp/mm). At 18 lp/mm the device has demonstrated a 31% diffraction efficiency with a 600-µs hologram write time using 400-nJ/cm2 write beams.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
    [CrossRef]
  2. M. T. Gruneisen, K. W. Peters, J. M. Wilkes, “Compensated imaging by real-time holography with optically addressed liquid-crystal spatial light modulators,” in Liquid Crystals, I. Khoo, ed., Proc. SPIE3143, 171–181 (1997).
    [CrossRef]
  3. M. V. Vasil’ev, V. A. Berenberg, A. A. Leshchev, P. M. Semenov, V. Yu. Venediktov, “Large numerical aperture imaging bypass system with dynamic holographic correction for primary mirror distortions,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 889–895 (1998).
    [CrossRef]
  4. An in-depth description of the LC molecular behavior can be found in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, ed. (Marcel Dekker, New York, 1995).
  5. J. W. Goodman, D. W. Jackson, M. Lehmann, J. Knotts, “Experiments in long-distance holographic imagery,” Appl. Opt. 8, 1581–1586 (1969).
    [CrossRef] [PubMed]
  6. S. Fukushima, T. Kurokawa, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
    [CrossRef]
  7. B. Landreth, C. C. Mao, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).
    [CrossRef]
  8. G. B. Cohen, R. Pogreb, K. Vinokur, D. Davidov, “Spatial light modulator based on a deformed-helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor,” Appl. Opt. 36, 455–459 (1997).
    [CrossRef] [PubMed]
  9. A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
    [CrossRef]
  10. Hamamatsu technical data sheets for the Model X5641 PAL-SLM parallel-aligned nematic LC spatial light modulator and the Model X4601 FLC-SLM ferroelectric LC spatial light modulator (Hamamatsu Corporation, 360 Foothill Road, Bridgewater, N.J. 08807, 1997).
  11. C. C. Mao, K. M. Johnson, G. Moddel, “Optical phase conjugation using optically addressed chiral smectic liquid crystal spatial light modulators,” Ferroelectrics 114, 45–53 (1991).
    [CrossRef]
  12. L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-optical response of a thin layer of a ferroelectric liquid crystal with a small pitch and high spontaneous polarization,” Ferroelectrics 85, 173–186 (1988).
    [CrossRef]
  13. K. Akiyama, A. Takimoto, H. Ogawa, “Photoaddressed spatial light modulator using transmissive and highly photosensitive amorphous-silicon carbide film,” Appl. Opt. 32, 6493–6500 (1993).
    [CrossRef] [PubMed]
  14. Y. Hamakawa, ed., Amorphous Semiconductor Technologies and Devices (Ohmsha, Ltd., Tokyo, 1981).
  15. L. A. Beresnev, W. Dultz, A. Onokhov, W. Haase, “Local optical limiting devices based on photoaddressed spatial light modulators, using ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 304, 285–293 (1997).
    [CrossRef]
  16. I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
    [CrossRef]

1997 (2)

L. A. Beresnev, W. Dultz, A. Onokhov, W. Haase, “Local optical limiting devices based on photoaddressed spatial light modulators, using ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 304, 285–293 (1997).
[CrossRef]

G. B. Cohen, R. Pogreb, K. Vinokur, D. Davidov, “Spatial light modulator based on a deformed-helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor,” Appl. Opt. 36, 455–459 (1997).
[CrossRef] [PubMed]

1993 (1)

1991 (4)

I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
[CrossRef]

S. Fukushima, T. Kurokawa, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
[CrossRef]

B. Landreth, C. C. Mao, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).
[CrossRef]

C. C. Mao, K. M. Johnson, G. Moddel, “Optical phase conjugation using optically addressed chiral smectic liquid crystal spatial light modulators,” Ferroelectrics 114, 45–53 (1991).
[CrossRef]

1988 (1)

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-optical response of a thin layer of a ferroelectric liquid crystal with a small pitch and high spontaneous polarization,” Ferroelectrics 85, 173–186 (1988).
[CrossRef]

1969 (1)

Abdulhalim, I.

I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
[CrossRef]

Akiyama, K.

Berenberg, V. A.

M. V. Vasil’ev, V. A. Berenberg, A. A. Leshchev, P. M. Semenov, V. Yu. Venediktov, “Large numerical aperture imaging bypass system with dynamic holographic correction for primary mirror distortions,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 889–895 (1998).
[CrossRef]

A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
[CrossRef]

Beresnev, L. A.

L. A. Beresnev, W. Dultz, A. Onokhov, W. Haase, “Local optical limiting devices based on photoaddressed spatial light modulators, using ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 304, 285–293 (1997).
[CrossRef]

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-optical response of a thin layer of a ferroelectric liquid crystal with a small pitch and high spontaneous polarization,” Ferroelectrics 85, 173–186 (1988).
[CrossRef]

N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
[CrossRef]

A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
[CrossRef]

Blinov, L. M.

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-optical response of a thin layer of a ferroelectric liquid crystal with a small pitch and high spontaneous polarization,” Ferroelectrics 85, 173–186 (1988).
[CrossRef]

Chaika, A. N.

N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
[CrossRef]

A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
[CrossRef]

Cohen, G. B.

Davidov, D.

Dergachev, D. I.

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-optical response of a thin layer of a ferroelectric liquid crystal with a small pitch and high spontaneous polarization,” Ferroelectrics 85, 173–186 (1988).
[CrossRef]

Dultz, W.

L. A. Beresnev, W. Dultz, A. Onokhov, W. Haase, “Local optical limiting devices based on photoaddressed spatial light modulators, using ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 304, 285–293 (1997).
[CrossRef]

Feoktistov, N. A.

N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
[CrossRef]

A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
[CrossRef]

Fukushima, S.

S. Fukushima, T. Kurokawa, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
[CrossRef]

Goodman, J. W.

Gromadin, A. L.

N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
[CrossRef]

Gruneisen, M. T.

M. T. Gruneisen, K. W. Peters, J. M. Wilkes, “Compensated imaging by real-time holography with optically addressed liquid-crystal spatial light modulators,” in Liquid Crystals, I. Khoo, ed., Proc. SPIE3143, 171–181 (1997).
[CrossRef]

Haase, W.

L. A. Beresnev, W. Dultz, A. Onokhov, W. Haase, “Local optical limiting devices based on photoaddressed spatial light modulators, using ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 304, 285–293 (1997).
[CrossRef]

A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
[CrossRef]

Isaev, M. V.

A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
[CrossRef]

Ivanova, N. L.

A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
[CrossRef]

N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
[CrossRef]

Jackson, D. W.

Johnson, K. M.

C. C. Mao, K. M. Johnson, G. Moddel, “Optical phase conjugation using optically addressed chiral smectic liquid crystal spatial light modulators,” Ferroelectrics 114, 45–53 (1991).
[CrossRef]

Knotts, J.

Kurokawa, T.

S. Fukushima, T. Kurokawa, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
[CrossRef]

Landreth, B.

B. Landreth, C. C. Mao, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).
[CrossRef]

Lehmann, M.

Leshchev, A. A.

M. V. Vasil’ev, V. A. Berenberg, A. A. Leshchev, P. M. Semenov, V. Yu. Venediktov, “Large numerical aperture imaging bypass system with dynamic holographic correction for primary mirror distortions,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 889–895 (1998).
[CrossRef]

Mao, C. C.

B. Landreth, C. C. Mao, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).
[CrossRef]

C. C. Mao, K. M. Johnson, G. Moddel, “Optical phase conjugation using optically addressed chiral smectic liquid crystal spatial light modulators,” Ferroelectrics 114, 45–53 (1991).
[CrossRef]

Moddel, G.

C. C. Mao, K. M. Johnson, G. Moddel, “Optical phase conjugation using optically addressed chiral smectic liquid crystal spatial light modulators,” Ferroelectrics 114, 45–53 (1991).
[CrossRef]

B. Landreth, C. C. Mao, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).
[CrossRef]

I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
[CrossRef]

Ogawa, H.

Onokhov, A.

L. A. Beresnev, W. Dultz, A. Onokhov, W. Haase, “Local optical limiting devices based on photoaddressed spatial light modulators, using ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 304, 285–293 (1997).
[CrossRef]

Onokhov, A. P.

N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
[CrossRef]

A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
[CrossRef]

Peters, K. W.

M. T. Gruneisen, K. W. Peters, J. M. Wilkes, “Compensated imaging by real-time holography with optically addressed liquid-crystal spatial light modulators,” in Liquid Crystals, I. Khoo, ed., Proc. SPIE3143, 171–181 (1997).
[CrossRef]

Pogreb, R.

Resnichenko, V. V.

N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
[CrossRef]

Semenov, P. M.

M. V. Vasil’ev, V. A. Berenberg, A. A. Leshchev, P. M. Semenov, V. Yu. Venediktov, “Large numerical aperture imaging bypass system with dynamic holographic correction for primary mirror distortions,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 889–895 (1998).
[CrossRef]

Takimoto, A.

Vasil’ev, M. V.

M. V. Vasil’ev, V. A. Berenberg, A. A. Leshchev, P. M. Semenov, V. Yu. Venediktov, “Large numerical aperture imaging bypass system with dynamic holographic correction for primary mirror distortions,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 889–895 (1998).
[CrossRef]

Vinokur, K.

Wilkes, J. M.

M. T. Gruneisen, K. W. Peters, J. M. Wilkes, “Compensated imaging by real-time holography with optically addressed liquid-crystal spatial light modulators,” in Liquid Crystals, I. Khoo, ed., Proc. SPIE3143, 171–181 (1997).
[CrossRef]

Yeskov, D. N.

N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
[CrossRef]

Yu. Venediktov, V.

M. V. Vasil’ev, V. A. Berenberg, A. A. Leshchev, P. M. Semenov, V. Yu. Venediktov, “Large numerical aperture imaging bypass system with dynamic holographic correction for primary mirror distortions,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 889–895 (1998).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Fukushima, T. Kurokawa, “Real-time hologram construction and reconstruction using a high-resolution spatial light modulator,” Appl. Phys. Lett. 58, 787–789 (1991).
[CrossRef]

Ferroelectrics (2)

C. C. Mao, K. M. Johnson, G. Moddel, “Optical phase conjugation using optically addressed chiral smectic liquid crystal spatial light modulators,” Ferroelectrics 114, 45–53 (1991).
[CrossRef]

L. A. Beresnev, L. M. Blinov, D. I. Dergachev, “Electro-optical response of a thin layer of a ferroelectric liquid crystal with a small pitch and high spontaneous polarization,” Ferroelectrics 85, 173–186 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (1)

B. Landreth, C. C. Mao, G. Moddel, “Operating characteristics of optically addressed spatial light modulators incorporating distorted helix ferroelectric liquid crystals,” Jpn. J. Appl. Phys. 30, 1400–1404 (1991).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

L. A. Beresnev, W. Dultz, A. Onokhov, W. Haase, “Local optical limiting devices based on photoaddressed spatial light modulators, using ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 304, 285–293 (1997).
[CrossRef]

I. Abdulhalim, G. Moddel, “Electrically and optically controlled light modulation and color switching using helix distortion of ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. 200, 79–101 (1991).
[CrossRef]

Other (7)

Y. Hamakawa, ed., Amorphous Semiconductor Technologies and Devices (Ohmsha, Ltd., Tokyo, 1981).

N. L. Ivanova, A. P. Onokhov, A. N. Chaika, V. V. Resnichenko, D. N. Yeskov, A. L. Gromadin, N. A. Feoktistov, L. A. Beresnev, “Liquid crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 180–185 (1996).
[CrossRef]

M. T. Gruneisen, K. W. Peters, J. M. Wilkes, “Compensated imaging by real-time holography with optically addressed liquid-crystal spatial light modulators,” in Liquid Crystals, I. Khoo, ed., Proc. SPIE3143, 171–181 (1997).
[CrossRef]

M. V. Vasil’ev, V. A. Berenberg, A. A. Leshchev, P. M. Semenov, V. Yu. Venediktov, “Large numerical aperture imaging bypass system with dynamic holographic correction for primary mirror distortions,” in Adaptive Optical System Technologies, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 889–895 (1998).
[CrossRef]

An in-depth description of the LC molecular behavior can be found in Spatial Light Modulator Technology: Materials, Devices, and Applications, U. Efron, ed. (Marcel Dekker, New York, 1995).

A. P. Onokhov, V. A. Berenberg, A. N. Chaika, N. L. Ivanova, M. V. Isaev, N. A. Feoktistov, L. A. Beresnev, W. Haase, “Novel liquid-crystal spatial light modulators for adaptive optics and image processing,” in Advances in Optical Information Processing VIII, D. R. Pape, ed., Proc. SPIE3388, 139–148 (1998).
[CrossRef]

Hamamatsu technical data sheets for the Model X5641 PAL-SLM parallel-aligned nematic LC spatial light modulator and the Model X4601 FLC-SLM ferroelectric LC spatial light modulator (Hamamatsu Corporation, 360 Foothill Road, Bridgewater, N.J. 08807, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

OASLM showing write, aberrated-read, and reflected/diffracted beams. Note that the DHFLC molecules actually rotate within the plane that is parallel to the LC layer (normal to the page).

Fig. 2
Fig. 2

(a) Experimental configuration for measuring molecular-switching dynamics. The graphs show the measured switching dynamics (b) without and (c) with PC illumination. The dashed curve shows the bias voltage.

Fig. 3
Fig. 3

Timing diagram for transient hologram formation and decay. Shown are the OASLM’s bias voltage, the spatially and temporally modulated write pulse, and the orientation of the averaged-index ellipsoid.

Fig. 4
Fig. 4

Experimental setup for measuring the DE. PZT, piezoelectric transducer; PBS, polarizing beam splitter.

Fig. 5
Fig. 5

Transient diffraction hologram dynamics showing a 600-µs holographic write time with a 30% DE. The inset graph shows similar data taken with a higher temporal resolution.

Fig. 6
Fig. 6

Peak DE versus grating spatial frequency.

Fig. 7
Fig. 7

Time-resolved DE showing high-duty-cycle operation.

Metrics