Abstract

Resonant grating waveguide structures were used to fabricate narrow-bandwidth optical filters. Azopolymer films were deposited on top of slab waveguides, and surface relief gratings were optically inscribed on them to be used as couplers. This technique is a simple one-step process and produces efficient gratings with high accuracy. Sharp resonant peaks are observed in the transmission and the reflection spectra of these structures. The thickness and the index of refraction of the waveguide can be accurately determined from these resonances by use of modal theory. These parameters are then used in the design of an optical filter. Bandwidths of less than 1 nm and a decrease in transmitted signal of 60% are reported. Measurement of these values was limited by the divergence of the probe beam.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).
    [CrossRef]
  2. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  3. S. S. Wang, R. Magnusson, J. S. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
    [CrossRef]
  4. R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  5. A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
    [CrossRef]
  6. P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008–1010 (1997).
    [CrossRef]
  7. S. S. Wang, R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
    [CrossRef] [PubMed]
  8. A. Sharon, D. Rosenblatt, A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
    [CrossRef]
  9. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  10. M. Nevière, “Bragg–Fresnel multilayer gratings: electromagnetic theory,” J. Opt. Soc. Am. A 11, 1835–1845 (1994).
    [CrossRef]
  11. H. L. Garvin, E. Garmire, S. Somekh, H. Stoll, A. Yariv, “Ion beam micromachining of integrated optics components,” Appl. Opt. 12, 455–459 (1973).
    [CrossRef] [PubMed]
  12. L. F. Johnson, G. W. Kammlott, K. A. Ingersoll, “Generation of periodic surface corrugations,” Appl. Opt. 17, 1165–1181 (1978).
    [CrossRef] [PubMed]
  13. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984).
    [CrossRef] [PubMed]
  14. P. Rochon, J. Mao, A. Natansohn, E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154–155 (1994).
  15. P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
    [CrossRef]
  16. D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser induced holographic surface relief gratings on non-linear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
    [CrossRef]
  17. P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
    [CrossRef]
  18. M. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44–49 (1996).
    [CrossRef]
  19. A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4′-[[2-(acrylogloxy)ethyl]ethylamino]-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
    [CrossRef]
  20. A. Natansohn, P. Rochon, M. Ho, C. Barrett, “Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene],” Macromolecules 28, 4179–4183 (1995).
    [CrossRef]
  21. X. Meng, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 13. Photoorientation of rigid side-groups containing 2 azo bonds,” Polymer 38, 2677–2682 (1997).
    [CrossRef]
  22. X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, C. T. Seaton, “Simple versatile method for fabricating guided-wave gratings,” Appl. Opt. 24, 3155–3161 (1985).
    [CrossRef] [PubMed]
  23. A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
    [CrossRef]
  24. J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
    [CrossRef]
  25. P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
    [CrossRef]
  26. P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Kinetics for reversible optical storage in azopolymers,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. SPIE1774, 181–187 (1992).
    [CrossRef]
  27. C. J. Barrett, A. Natansohn, P. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
    [CrossRef]
  28. T. G. Pederson, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyester,” J. Opt. Soc. Am. B 15, 1120–1129 (1998).
    [CrossRef]
  29. P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1998).
    [CrossRef]
  30. P. Rochon, J. Paterson, A. Natansohn, “Efficiency of optically induced surface gratings on azo polymer films,” in Applied Optics and Optoelectronics 1996, Proceedings of the Applied Optics Divisional Conference of the Institute of Physics, K. T. V. Grattan, ed. (Institute of Physics, Brisol, UK, 1996), pp. 116–119.
  31. J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, L. Robitaille, “Optically inscribed surface relief gratings on azobenzene-containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69, 3318–3320 (1996).
    [CrossRef]
  32. GSOLVER was developed in 1984 by the Grating Solver Development Company, P.O. Box 353, Allen, Texas 75013. Website at http://www.gsolver.com .
  33. D. Marcuse, “Geometrical optics treatment of slab waveguides,” in Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, San Diego, Calif., 1991), pp. 3–7.
  34. C. R. Pollock, Fundamentals of Optoelectronics (R. D. Irwin, Chicago, Ill., 1995).

1998

A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
[CrossRef]

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1998).
[CrossRef]

T. G. Pederson, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyester,” J. Opt. Soc. Am. B 15, 1120–1129 (1998).
[CrossRef]

1997

A. Sharon, D. Rosenblatt, A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
[CrossRef]

X. Meng, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 13. Photoorientation of rigid side-groups containing 2 azo bonds,” Polymer 38, 2677–2682 (1997).
[CrossRef]

P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008–1010 (1997).
[CrossRef]

1996

A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

M. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44–49 (1996).
[CrossRef]

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, L. Robitaille, “Optically inscribed surface relief gratings on azobenzene-containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69, 3318–3320 (1996).
[CrossRef]

C. J. Barrett, A. Natansohn, P. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[CrossRef]

1995

A. Natansohn, P. Rochon, M. Ho, C. Barrett, “Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene],” Macromolecules 28, 4179–4183 (1995).
[CrossRef]

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser induced holographic surface relief gratings on non-linear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

1994

P. Rochon, J. Mao, A. Natansohn, E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154–155 (1994).

M. Nevière, “Bragg–Fresnel multilayer gratings: electromagnetic theory,” J. Opt. Soc. Am. A 11, 1835–1845 (1994).
[CrossRef]

1993

1992

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4′-[[2-(acrylogloxy)ethyl]ethylamino]-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

1990

1985

1984

1981

1978

1973

1965

Bagby, J. S.

Barrett, C.

A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
[CrossRef]

A. Natansohn, P. Rochon, M. Ho, C. Barrett, “Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene],” Macromolecules 28, 4179–4183 (1995).
[CrossRef]

Barrett, C. J.

C. J. Barrett, A. Natansohn, P. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[CrossRef]

Batalla, E.

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

P. Rochon, J. Mao, A. Natansohn, E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154–155 (1994).

Bonenfant, S.

A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
[CrossRef]

Buffeteau, T.

A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
[CrossRef]

Callender, C. L.

P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008–1010 (1997).
[CrossRef]

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, L. Robitaille, “Optically inscribed surface relief gratings on azobenzene-containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69, 3318–3320 (1996).
[CrossRef]

Fiorini, C.

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1998).
[CrossRef]

Friesem, A. A.

A. Sharon, D. Rosenblatt, A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Garmire, E.

Garvin, H. L.

Gaylord, T. K.

Gibson, U. J.

Gosselin, J.

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4′-[[2-(acrylogloxy)ethyl]ethylamino]-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Kinetics for reversible optical storage in azopolymers,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. SPIE1774, 181–187 (1992).
[CrossRef]

Hessel, A.

Ho, M.

M. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44–49 (1996).
[CrossRef]

A. Natansohn, P. Rochon, M. Ho, C. Barrett, “Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene],” Macromolecules 28, 4179–4183 (1995).
[CrossRef]

Holme, N. C. R.

T. G. Pederson, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyester,” J. Opt. Soc. Am. B 15, 1120–1129 (1998).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

Hunsperger, R.

R. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).
[CrossRef]

Hvilsted, S.

T. G. Pederson, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyester,” J. Opt. Soc. Am. B 15, 1120–1129 (1998).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

Ingersoll, K. A.

Jiang, X.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

Johansen, P. M.

Johnson, L. F.

Kammlott, G. W.

Kim, D.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser induced holographic surface relief gratings on non-linear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Kumar, J.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser induced holographic surface relief gratings on non-linear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Lee, T.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

Lefin, P.

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1998).
[CrossRef]

Li, L.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser induced holographic surface relief gratings on non-linear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Magnusson, R.

Mai, X.

Mao, J.

P. Rochon, J. Mao, A. Natansohn, E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154–155 (1994).

Marcuse, D.

D. Marcuse, “Geometrical optics treatment of slab waveguides,” in Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, San Diego, Calif., 1991), pp. 3–7.

Meng, X.

A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
[CrossRef]

X. Meng, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 13. Photoorientation of rigid side-groups containing 2 azo bonds,” Polymer 38, 2677–2682 (1997).
[CrossRef]

Moharam, M. G.

Moshrefzadeh, R.

Natansohn, A.

A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
[CrossRef]

X. Meng, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 13. Photoorientation of rigid side-groups containing 2 azo bonds,” Polymer 38, 2677–2682 (1997).
[CrossRef]

P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008–1010 (1997).
[CrossRef]

M. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44–49 (1996).
[CrossRef]

C. J. Barrett, A. Natansohn, P. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[CrossRef]

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, L. Robitaille, “Optically inscribed surface relief gratings on azobenzene-containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69, 3318–3320 (1996).
[CrossRef]

A. Natansohn, P. Rochon, M. Ho, C. Barrett, “Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene],” Macromolecules 28, 4179–4183 (1995).
[CrossRef]

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

P. Rochon, J. Mao, A. Natansohn, E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154–155 (1994).

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4′-[[2-(acrylogloxy)ethyl]ethylamino]-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Kinetics for reversible optical storage in azopolymers,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. SPIE1774, 181–187 (1992).
[CrossRef]

P. Rochon, J. Paterson, A. Natansohn, “Efficiency of optically induced surface gratings on azo polymer films,” in Applied Optics and Optoelectronics 1996, Proceedings of the Applied Optics Divisional Conference of the Institute of Physics, K. T. V. Grattan, ed. (Institute of Physics, Brisol, UK, 1996), pp. 116–119.

Nevière, M.

Nunzi, J. M.

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1998).
[CrossRef]

Oliner, A. A.

Paterson, J.

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, L. Robitaille, “Optically inscribed surface relief gratings on azobenzene-containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69, 3318–3320 (1996).
[CrossRef]

P. Rochon, J. Paterson, A. Natansohn, “Efficiency of optically induced surface gratings on azo polymer films,” in Applied Optics and Optoelectronics 1996, Proceedings of the Applied Optics Divisional Conference of the Institute of Physics, K. T. V. Grattan, ed. (Institute of Physics, Brisol, UK, 1996), pp. 116–119.

Pederson, T. G.

Pezolet, M.

A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
[CrossRef]

Pollock, C. R.

C. R. Pollock, Fundamentals of Optoelectronics (R. D. Irwin, Chicago, Ill., 1995).

Ramanujam, P. S.

T. G. Pederson, P. M. Johansen, N. C. R. Holme, P. S. Ramanujam, S. Hvilsted, “Theoretical model of photoinduced anisotropy in liquid crystalline azobenzene side-chain polyester,” J. Opt. Soc. Am. B 15, 1120–1129 (1998).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

Robitaille, L.

P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008–1010 (1997).
[CrossRef]

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, L. Robitaille, “Optically inscribed surface relief gratings on azobenzene-containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69, 3318–3320 (1996).
[CrossRef]

Rochon, P.

A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
[CrossRef]

P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008–1010 (1997).
[CrossRef]

X. Meng, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 13. Photoorientation of rigid side-groups containing 2 azo bonds,” Polymer 38, 2677–2682 (1997).
[CrossRef]

M. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44–49 (1996).
[CrossRef]

C. J. Barrett, A. Natansohn, P. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[CrossRef]

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, L. Robitaille, “Optically inscribed surface relief gratings on azobenzene-containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69, 3318–3320 (1996).
[CrossRef]

A. Natansohn, P. Rochon, M. Ho, C. Barrett, “Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene],” Macromolecules 28, 4179–4183 (1995).
[CrossRef]

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

P. Rochon, J. Mao, A. Natansohn, E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154–155 (1994).

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4′-[[2-(acrylogloxy)ethyl]ethylamino]-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Kinetics for reversible optical storage in azopolymers,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. SPIE1774, 181–187 (1992).
[CrossRef]

P. Rochon, J. Paterson, A. Natansohn, “Efficiency of optically induced surface gratings on azo polymer films,” in Applied Optics and Optoelectronics 1996, Proceedings of the Applied Optics Divisional Conference of the Institute of Physics, K. T. V. Grattan, ed. (Institute of Physics, Brisol, UK, 1996), pp. 116–119.

Rosenblatt, D.

A. Sharon, D. Rosenblatt, A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Seaton, C. T.

Sharon, A.

A. Sharon, D. Rosenblatt, A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
[CrossRef]

A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

Somekh, S.

Stegeman, G. I.

Stoll, H.

Tripathy, S.

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser induced holographic surface relief gratings on non-linear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

Wang, S. S.

Xie, S.

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4′-[[2-(acrylogloxy)ethyl]ethylamino]-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Kinetics for reversible optical storage in azopolymers,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. SPIE1774, 181–187 (1992).
[CrossRef]

Yariv, A.

Yokomori, K.

Appl. Opt.

Appl. Phys. Lett.

R. Magnusson, S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

A. Sharon, D. Rosenblatt, A. A. Friesem, “Narrow spectral bandwidths with grating waveguide structures,” Appl. Phys. Lett. 69, 4154–4156 (1996).
[CrossRef]

P. Rochon, A. Natansohn, C. L. Callender, L. Robitaille, “Guided mode resonance filters using polymer films,” Appl. Phys. Lett. 71, 1008–1010 (1997).
[CrossRef]

P. Rochon, E. Batalla, A. Natansohn, “Optically induced surface gratings on azoaromatic polymer films,” Appl. Phys. Lett. 66, 136–138 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, J. Kumar, “Laser induced holographic surface relief gratings on non-linear optical polymer films,” Appl. Phys. Lett. 66, 1166–1168 (1995).
[CrossRef]

P. S. Ramanujam, N. C. R. Holme, S. Hvilsted, “Atomic force and optical near-field microscopic investigation of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester,” Appl. Phys. Lett. 68, 1329–1331 (1996).
[CrossRef]

J. Kumar, L. Li, X. Jiang, D. Kim, T. Lee, S. Tripathy, “Gradient force—the mechanism for surface relief grating formation in azobenzene functionalized polymers,” Appl. Phys. Lett. 72, 2096–2098 (1998).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Optically induced and erased birefringence and dichroism in azoaromatic polymers,” Appl. Phys. Lett. 60, 4–5 (1992).
[CrossRef]

J. Paterson, A. Natansohn, P. Rochon, C. L. Callender, L. Robitaille, “Optically inscribed surface relief gratings on azobenzene-containing polymers for coupling light into slab waveguides,” Appl. Phys. Lett. 69, 3318–3320 (1996).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem.

C. J. Barrett, A. Natansohn, P. Rochon, “Mechanism of optically inscribed high-efficiency diffraction gratings in azo polymer films,” J. Phys. Chem. 100, 8836–8842 (1996).
[CrossRef]

Macromolecules

A. Natansohn, P. Rochon, X. Meng, C. Barrett, T. Buffeteau, S. Bonenfant, M. Pezolet, “Molecular addressing—selective photoinduced cooperative motion of polar ester groups in copolymers containing azobenzene groups,” Macromolecules 31, 1155–1161 (1998).
[CrossRef]

M. Ho, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44–49 (1996).
[CrossRef]

A. Natansohn, P. Rochon, J. Gosselin, S. Xie, “Azo polymers for reversible optical storage. 1. Poly[4′-[[2-(acrylogloxy)ethyl]ethylamino]-4-nitroazobenzene],” Macromolecules 25, 2268–2273 (1992).
[CrossRef]

A. Natansohn, P. Rochon, M. Ho, C. Barrett, “Azo polymers for reversible optical storage. 6. Poly[4-[2-(methacryloyloxy)ethyl]azobenzene],” Macromolecules 28, 4179–4183 (1995).
[CrossRef]

Opt. Mater.

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1998).
[CrossRef]

Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem.

P. Rochon, J. Mao, A. Natansohn, E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154–155 (1994).

Polymer

X. Meng, A. Natansohn, P. Rochon, “Azo polymers for reversible optical storage. 13. Photoorientation of rigid side-groups containing 2 azo bonds,” Polymer 38, 2677–2682 (1997).
[CrossRef]

Other

R. Hunsperger, Integrated Optics: Theory and Technology, 4th ed. (Springer-Verlag, Berlin, 1995).
[CrossRef]

P. Rochon, J. Gosselin, A. Natansohn, S. Xie, “Kinetics for reversible optical storage in azopolymers,” in Nonconducting Photopolymers and Applications, R. A. Lessard, ed., Proc. SPIE1774, 181–187 (1992).
[CrossRef]

GSOLVER was developed in 1984 by the Grating Solver Development Company, P.O. Box 353, Allen, Texas 75013. Website at http://www.gsolver.com .

D. Marcuse, “Geometrical optics treatment of slab waveguides,” in Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, San Diego, Calif., 1991), pp. 3–7.

C. R. Pollock, Fundamentals of Optoelectronics (R. D. Irwin, Chicago, Ill., 1995).

P. Rochon, J. Paterson, A. Natansohn, “Efficiency of optically induced surface gratings on azo polymer films,” in Applied Optics and Optoelectronics 1996, Proceedings of the Applied Optics Divisional Conference of the Institute of Physics, K. T. V. Grattan, ed. (Institute of Physics, Brisol, UK, 1996), pp. 116–119.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Grating fabrication apparatus.

Fig. 2
Fig. 2

Atomic force microscope scan of a surface relief grating with a period of 390 nm.

Fig. 3
Fig. 3

Waveguide grating structure.

Fig. 4
Fig. 4

Principle of reversibility in reflection.

Fig. 5
Fig. 5

Experimental setup for angular scans.

Fig. 6
Fig. 6

TE transmission and reflection data for polyimide sample. Parameters: λ = 632.8 nm, n s = 1.457, n f = 1.566, n c = 1.659, grating period at 382.3 nm, thickness at ≈3.0 µm.

Fig. 7
Fig. 7

TE transmission data comparison of measured resonances between experiment, analytic method (modal theory), and full electromagnetic theory (GSOLVER) for polyimide sample. Parameters: λ = 833.1 nm, n s = 1.453, n f = 1.553, n c = 1.655, grating period at 382.3 nm, thickness at 3.43 µm.

Fig. 8
Fig. 8

TE (1.0-µm) transmission data for Si3N4 sample. Parameters: λ = 833.1 nm, n s = 1.527, n f = 2.00, n c = 1.654. Grating periods used are 406.1 and 574.6 nm.

Tables (2)

Tables Icon

Table 1 Summary of Results for Polyimide Sample for Thickness ha and Index of Film nf

Tables Icon

Table 2 Summary of Results for the 1.0-µm Silicon Nitride Samplea

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Λ=λ0/2 sin θ.
ntk0 sin θm=nik0 sin θi±K,
tanκh=γs+γcκ1-γsγcκ2,
tanκh=nf2ns2γs+nf2nc2γcκ1-nf4ns2nc2γsγcκ2,
β2+κ2=k02nf2.
neff=ni sin θi±λ0/Λ.

Metrics