Abstract

A technique for discriminating between scattering and absorbing inclusions located in the center of a scattering slab is presented. The technique is based on an empirical model that provides a simple mathematical expression to describe the change in the time-resolved transmission resulting from the presence of an inclusion. Experimental results from various configurations show that the technique allows for proper recognition of the type of an inclusion whether it is scattering or absorbing. This technique is a significant step toward tissue differentiation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. and Photon. News 7, 17–22 (1996).
    [CrossRef]
  2. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef] [PubMed]
  3. J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [CrossRef] [PubMed]
  4. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  5. D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
    [CrossRef] [PubMed]
  6. R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).
    [CrossRef]
  7. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
    [CrossRef] [PubMed]
  8. H. Wabnitz, H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36, 64–74 (1997).
    [CrossRef] [PubMed]
  9. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1996).
    [CrossRef]
  10. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
    [CrossRef] [PubMed]
  11. J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
    [CrossRef]
  12. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
    [CrossRef] [PubMed]
  13. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffuse media: discrimination between scattering and absorption inclusions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
    [CrossRef]
  14. J. C. Hebden, S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996).
    [CrossRef] [PubMed]
  15. A. H. Gandjbakhche, V. Chernomordik, R. F. Bonner, J. C. Hebden, R. J. Nossal, “Use of time-dependent contrast functions to discriminate between the scattering and absorption properties of abnormal regions hidden within a tissue model,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 211–218 (1997).
  16. J. C. Hebden, M. Tziraki, D. T. Delpy, “Evaluation of the temporally extrapolated absorbance method for dual-wavelength imaging through tissuelike scattering media,” Appl. Opt. 36, 3802–3810 (1997).
    [CrossRef] [PubMed]
  17. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. J. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
    [CrossRef]
  18. M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597 (to be published).
  19. S. R. Arridge, “Photon-measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]

1998 (1)

1997 (4)

1996 (5)

1995 (3)

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

S. R. Arridge, “Photon-measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

R. Aronson, “Boundary conditions for diffusion of light,” J. Opt. Soc. Am. A 12, 2532–2539 (1995).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

1989 (1)

Alfano, R. R.

Aronson, R.

Arridge, S. R.

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996).
[CrossRef] [PubMed]

S. R. Arridge, “Photon-measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Beaudry, P.

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597 (to be published).

Bonner, R. F.

A. H. Gandjbakhche, V. Chernomordik, R. F. Bonner, J. C. Hebden, R. J. Nossal, “Use of time-dependent contrast functions to discriminate between the scattering and absorption properties of abnormal regions hidden within a tissue model,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 211–218 (1997).

Chance, B.

Chatigny, S.

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597 (to be published).

Chernomordik, V.

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. J. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

A. H. Gandjbakhche, V. Chernomordik, R. F. Bonner, J. C. Hebden, R. J. Nossal, “Use of time-dependent contrast functions to discriminate between the scattering and absorption properties of abnormal regions hidden within a tissue model,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 211–218 (1997).

Contini, D.

Cope, M.

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffuse media: discrimination between scattering and absorption inclusions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

Das, B. B.

Delpy, D. T.

Firbank, M.

Gandjbakhche, A. H.

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. J. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

A. H. Gandjbakhche, V. Chernomordik, R. F. Bonner, J. C. Hebden, R. J. Nossal, “Use of time-dependent contrast functions to discriminate between the scattering and absorption properties of abnormal regions hidden within a tissue model,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 211–218 (1997).

Gayen, S. K.

S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. and Photon. News 7, 17–22 (1996).
[CrossRef]

Hall, D. J.

Hebden, J. C.

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. J. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

J. C. Hebden, M. Tziraki, D. T. Delpy, “Evaluation of the temporally extrapolated absorbance method for dual-wavelength imaging through tissuelike scattering media,” Appl. Opt. 36, 3802–3810 (1997).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1996).
[CrossRef]

J. C. Hebden, S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996).
[CrossRef] [PubMed]

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
[CrossRef] [PubMed]

A. H. Gandjbakhche, V. Chernomordik, R. F. Bonner, J. C. Hebden, R. J. Nossal, “Use of time-dependent contrast functions to discriminate between the scattering and absorption properties of abnormal regions hidden within a tissue model,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 211–218 (1997).

Mailloux, A.

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597 (to be published).

Martelli, F.

Morin, M.

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597 (to be published).

Nossal, R. J.

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. J. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

A. H. Gandjbakhche, V. Chernomordik, R. F. Bonner, J. C. Hebden, R. J. Nossal, “Use of time-dependent contrast functions to discriminate between the scattering and absorption properties of abnormal regions hidden within a tissue model,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 211–218 (1997).

Painchaud, Y.

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597 (to be published).

Patterson, M. S.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffuse media: discrimination between scattering and absorption inclusions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

Rinneberg, H.

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffuse media: discrimination between scattering and absorption inclusions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffuse media: discrimination between scattering and absorption inclusions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

Tziraki, M.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffuse media: discrimination between scattering and absorption inclusions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

Wabnitz, H.

Wilson, B. C.

Yoo, K. M.

Zaccanti, G.

Appl. Opt. (9)

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997).
[CrossRef] [PubMed]

H. Wabnitz, H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36, 64–74 (1997).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1996).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, “Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996).
[CrossRef] [PubMed]

J. C. Hebden, M. Tziraki, D. T. Delpy, “Evaluation of the temporally extrapolated absorbance method for dual-wavelength imaging through tissuelike scattering media,” Appl. Opt. 36, 3802–3810 (1997).
[CrossRef] [PubMed]

A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, R. J. Nossal, “Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments,” Appl. Opt. 37, 1973–1981 (1998).
[CrossRef]

S. R. Arridge, “Photon-measurement density functions. Part 1: Analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Imaging of optical inhomogeneities in highly diffuse media: discrimination between scattering and absorption inclusions,” Appl. Phys. Lett. 69, 4162–4164 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. and Photon. News (1)

S. K. Gayen, R. R. Alfano, “Emerging optical biomedical imaging techniques,” Opt. and Photon. News 7, 17–22 (1996).
[CrossRef]

Opt. Laser Technol. (1)

J. C. Hebden, “Imaging through scattering media using characteristics of the temporal distribution of transmitted laser pulses,” Opt. Laser Technol. 27, 263–268 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Med. Biol. (2)

J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine. I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Other (2)

M. Morin, S. Chatigny, A. Mailloux, Y. Painchaud, P. Beaudry, “Time-domain perturbation analysis of a scattering slab,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. SPIE3597 (to be published).

A. H. Gandjbakhche, V. Chernomordik, R. F. Bonner, J. C. Hebden, R. J. Nossal, “Use of time-dependent contrast functions to discriminate between the scattering and absorption properties of abnormal regions hidden within a tissue model,” in Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, B. Chance, R. R. Alfano, eds., Proc. SPIE2979, 211–218 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Tissue phantom geometry.

Fig. 2
Fig. 2

Time-resolved transmittances measured through phantoms P s (top) and P a (bottom) containing scattering and absorbing inclusions, respectively.

Fig. 3
Fig. 3

Relative transmissions calculated from the time-resolved transmittances measured through phantoms P s (top) and P a (bottom).

Fig. 4
Fig. 4

Images obtained from the scanning of phantom B s , which contains a scattering inclusion. For each pixel, a scalar is obtained from the time-resolved transmittance and by use of (a) total time integration, (b) time integration of the first 450 ps, (c) μ a and (d) μ s ′ obtained from a curve fit of the homogeneous slab solution, (e) A a and (f) A d FIDM parameters displayed on independent color scales (g) A a and (h) A d displayed with the same color scale.

Fig. 5
Fig. 5

Images obtained from the scanning of phantom B a , which contains an absorbing inclusion. For each pixel, a scalar is obtained from the time-resolved transmittance and by use of (a) total time integration, (b) time integration of the first 450 ps, (c) μ a and (d) μ s ′ obtained from a curve fit of the homogeneous slab solution, (e) A a and (f) A d FIDM parameters displayed on independent color scales, (g) A a and (h) A d displayed on the same color scale.

Fig. 6
Fig. 6

Scattering ratio R d as a function of the depth of an absorbing and a scattering inclusion within a homogeneous scattering slab.

Tables (3)

Tables Icon

Table 1 Parameters of Phantoms Ps and Pa Used for the Development of the Empirical Modela

Tables Icon

Table 2 Parameters of Phantoms Bs and Ba Used to Test the Imaging Techniquesa

Tables Icon

Table 3 Scattering Ratio Rd Obtained with Different Inclusionsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ηt=-lnTinclTref,
ηt=Adt0t2,
ηt=Aa.
ηt=Adtot2+Aa.
Tt=A exp-μavt24πDv3/2t5/2m=-z1,m exp-z1,m24Dvt-z2,m exp-z2,m24Dvt,
z1,m=s1-2m-4mze-z0 z2,m=s1-2m-4m-2ze+z0,
Rd=|Ad||Ad|+|Aa|.

Metrics