Abstract

We developed a compact dual-wavelength multichannel tissue oximeter based on the time-correlated single-photon counting (TCSPC) technique. The light sources are two pulsed diode lasers (output wavelengths of 672 and 818 nm, an average power of 1 mW, a pulse duration of 100 ps, and a pulse-repetition rate as high as 80 MHz). The time-resolved reflectance photons are detected by a multianode photomultiplier, and the output signals are redirected by a router to different memory blocks of the TCSPC personal computer board. The system’s accuracy in determining the absorption μa and the reduced-scattering μs′ coefficients and in reconstructing absorber concentrations in diffusive media was tested on phantoms. Preliminary in vivo tissue-oxygenation measurements were performed on healthy volunteers under different physiological conditions with a minimum acquisition time of 100 ms and an injected power of less than 100 µW.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, A. Yodh, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995), and references therein.
    [CrossRef]
  2. Special issue on Diffusing Photons in Turbid Media, Appl. Opt. 36(1), (1997).
  3. Special issue on Diffusing Photons in Turbid Media, J. Opt. Soc. Am. A 14(1), (1997).
  4. Special issue on Optical Radiation Techniques in Medicine and Biology, Phys. Med. Biol. 42(5), (1997).
  5. G. A. Millikan, “The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man,” Rev. Sci. Instrum. 13, 434–444 (1942).
    [CrossRef]
  6. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
    [CrossRef] [PubMed]
  7. M. Kohl, M. Cope, M. Essenpreis, D. Böckner, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994).
    [CrossRef] [PubMed]
  8. G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
    [CrossRef] [PubMed]
  9. E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London B 352, 727–735 (1997).
    [CrossRef]
  10. M. Kohl, U. Lindauer, U. Dirnagl, A. Villringer, “Investigation of cortical spreading depression in rats by near infrared spectroscopy,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1988), pp. 21–22.
  11. For classical studies, see, for example, F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977); B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhaemoglobin in brain,” Proc. Natl. Acad. Sci. 85, 4971–4975 (1989). For recent studies, see, for example, D. A. Benaron, B. Chance, M. Ferrari eds., Photon propagation in Tissue III, Proc. SPIE3194 (1998); J. G. Fujimoto, M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Trends in Optics and Photonics Series and M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, (Optical Society of America, Washington D.C., 1998).
  12. S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1995).
    [CrossRef]
  13. S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).
  14. M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
    [CrossRef]
  15. M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Spectral dependence of temporal point-spread functions in human tissue,” Appl. Opt. 32, 418–425 (1993).
    [CrossRef] [PubMed]
  16. M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
    [CrossRef] [PubMed]
  17. S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
    [CrossRef] [PubMed]
  18. D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time-resolved spectroscopy and the determination of photon scattering, path length and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 511–516 (1993).
    [CrossRef]
  19. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
    [CrossRef] [PubMed]
  20. M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
    [CrossRef] [PubMed]
  21. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
    [CrossRef] [PubMed]
  22. M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
    [CrossRef] [PubMed]
  23. M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
    [CrossRef]
  24. H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
    [CrossRef]
  25. T. Kitai, B. Beauvoit, B. Chance, “Optical determination of fatty change of the graft liver with near-infrared time-resolved spectroscopy,” Transplantation 62, 642–647 (1996).
    [CrossRef] [PubMed]
  26. T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
    [CrossRef]
  27. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
    [CrossRef]
  28. S. A. Prahl, “Optical absorption of hemoglobin,” Biomed. Opt. NewsEtcJune (1998), http://ece.ogi.edu/omlc/news .
  29. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
    [CrossRef] [PubMed]
  30. W. G. Zijlstra, A. Buursma, W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
    [PubMed]
  31. A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
    [CrossRef] [PubMed]
  32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).
  33. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
    [CrossRef] [PubMed]
  34. S. Jacques, “Optical properties of Intralipid, an aqueous suspension of lipid droplets,” Biomed. Opt. NewsEtc April (1998), http://ece.ogi.edu/omlc/news .
  35. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
    [CrossRef] [PubMed]

1998 (3)

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

S. Jacques, “Optical properties of Intralipid, an aqueous suspension of lipid droplets,” Biomed. Opt. NewsEtc April (1998), http://ece.ogi.edu/omlc/news .

1997 (4)

Special issue on Diffusing Photons in Turbid Media, Appl. Opt. 36(1), (1997).

Special issue on Diffusing Photons in Turbid Media, J. Opt. Soc. Am. A 14(1), (1997).

Special issue on Optical Radiation Techniques in Medicine and Biology, Phys. Med. Biol. 42(5), (1997).

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London B 352, 727–735 (1997).
[CrossRef]

1996 (4)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

T. Kitai, B. Beauvoit, B. Chance, “Optical determination of fatty change of the graft liver with near-infrared time-resolved spectroscopy,” Transplantation 62, 642–647 (1996).
[CrossRef] [PubMed]

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

1995 (6)

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

B. Chance, A. Yodh, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995), and references therein.
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1995).
[CrossRef]

1994 (3)

1993 (4)

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Spectral dependence of temporal point-spread functions in human tissue,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[CrossRef]

1992 (2)

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

1991 (1)

W. G. Zijlstra, A. Buursma, W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

1988 (1)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

1977 (1)

For classical studies, see, for example, F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977); B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhaemoglobin in brain,” Proc. Natl. Acad. Sci. 85, 4971–4975 (1989). For recent studies, see, for example, D. A. Benaron, B. Chance, M. Ferrari eds., Photon propagation in Tissue III, Proc. SPIE3194 (1998); J. G. Fujimoto, M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Trends in Optics and Photonics Series and M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, (Optical Society of America, Washington D.C., 1998).

1942 (1)

G. A. Millikan, “The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man,” Rev. Sci. Instrum. 13, 434–444 (1942).
[CrossRef]

Arridge, S. R.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[CrossRef]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Spectral dependence of temporal point-spread functions in human tissue,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Beauvoit, B.

T. Kitai, B. Beauvoit, B. Chance, “Optical determination of fatty change of the graft liver with near-infrared time-resolved spectroscopy,” Transplantation 62, 642–647 (1996).
[CrossRef] [PubMed]

Benaron, D. A.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Böckner, D.

Buursma, A.

W. G. Zijlstra, A. Buursma, W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Carraresi, L.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Carter, S.

D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time-resolved spectroscopy and the determination of photon scattering, path length and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 511–516 (1993).
[CrossRef]

Chance, B.

T. Kitai, B. Beauvoit, B. Chance, “Optical determination of fatty change of the graft liver with near-infrared time-resolved spectroscopy,” Transplantation 62, 642–647 (1996).
[CrossRef] [PubMed]

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

B. Chance, A. Yodh, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995), and references therein.
[CrossRef]

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time-resolved spectroscopy and the determination of photon scattering, path length and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 511–516 (1993).
[CrossRef]

M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
[CrossRef]

Clemence, M.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[CrossRef] [PubMed]

Cooper, C. E.

S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1995).
[CrossRef]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

Cope, M.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[CrossRef] [PubMed]

M. Kohl, M. Cope, M. Essenpreis, D. Böckner, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994).
[CrossRef] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Spectral dependence of temporal point-spread functions in human tissue,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[CrossRef]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Corbellis, P. M.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
[CrossRef] [PubMed]

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

De Blasi, R. A.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Delpy, D. T.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[CrossRef]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Spectral dependence of temporal point-spread functions in human tissue,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

Dirnagl, U.

M. Kohl, U. Lindauer, U. Dirnagl, A. Villringer, “Investigation of cortical spreading depression in rats by near infrared spectroscopy,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1988), pp. 21–22.

Duncan, A.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[CrossRef] [PubMed]

Elwell, C. E.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[CrossRef]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Spectral dependence of temporal point-spread functions in human tissue,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

Essenpreis, M.

Fabiani, M.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London B 352, 727–735 (1997).
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
[CrossRef] [PubMed]

Fantini, S.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London B 352, 727–735 (1997).
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
[CrossRef] [PubMed]

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
[CrossRef] [PubMed]

Ferrari, M.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).

Fountain, M.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Franceschini, M. A.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London B 352, 727–735 (1997).
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
[CrossRef] [PubMed]

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
[CrossRef] [PubMed]

Friedman, D.

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
[CrossRef] [PubMed]

Gratton, E.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London B 352, 727–735 (1997).
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
[CrossRef] [PubMed]

J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, E. Gratton, “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Opt. Lett. 19, 2062–2064 (1994).
[CrossRef] [PubMed]

Gratton, G.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London B 352, 727–735 (1997).
[CrossRef]

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
[CrossRef] [PubMed]

Greenfeld, R.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Haida, M.

D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time-resolved spectroscopy and the determination of photon scattering, path length and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 511–516 (1993).
[CrossRef]

Hamaoka, T.

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Heekeren, H. R.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Higuchi, H.

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Holtom, G.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Horst, S.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Iwane, H.

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Jacques, S.

S. Jacques, “Optical properties of Intralipid, an aqueous suspension of lipid droplets,” Biomed. Opt. NewsEtc April (1998), http://ece.ogi.edu/omlc/news .

Jacques, S. L.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Jobsis, F. F.

For classical studies, see, for example, F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977); B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhaemoglobin in brain,” Proc. Natl. Acad. Sci. 85, 4971–4975 (1989). For recent studies, see, for example, D. A. Benaron, B. Chance, M. Ferrari eds., Photon propagation in Tissue III, Proc. SPIE3194 (1998); J. G. Fujimoto, M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Trends in Optics and Photonics Series and M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, (Optical Society of America, Washington D.C., 1998).

Katsumura, T.

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Kent, J.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Kitai, T.

T. Kitai, B. Beauvoit, B. Chance, “Optical determination of fatty change of the graft liver with near-infrared time-resolved spectroscopy,” Transplantation 62, 642–647 (1996).
[CrossRef] [PubMed]

Kohl, M.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

M. Kohl, M. Cope, M. Essenpreis, D. Böckner, “Influence of glucose concentration on light scattering in tissue-simulating phantoms,” Opt. Lett. 19, 2170–2172 (1994).
[CrossRef] [PubMed]

M. Kohl, U. Lindauer, U. Dirnagl, A. Villringer, “Investigation of cortical spreading depression in rats by near infrared spectroscopy,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1988), pp. 21–22.

Levy, W. J.

D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time-resolved spectroscopy and the determination of photon scattering, path length and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 511–516 (1993).
[CrossRef]

Lindauer, U.

M. Kohl, U. Lindauer, U. Dirnagl, A. Villringer, “Investigation of cortical spreading depression in rats by near infrared spectroscopy,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1988), pp. 21–22.

Maier, J. S.

Matcher, S. J.

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1995).
[CrossRef]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

McCully, K.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Meek, J. H.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[CrossRef] [PubMed]

Meeuwsen-van der Roest, W. P.

W. G. Zijlstra, A. Buursma, W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Millikan, G. A.

G. A. Millikan, “The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man,” Rev. Sci. Instrum. 13, 434–444 (1942).
[CrossRef]

Miwa, M.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
[CrossRef]

Murase, N.

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Musolino, M.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Nioka, S.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Nishimura, G.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

Nishio, S.

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Nolte, C.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Oda, M.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

Olbrig, H.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Osada, T.

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).

Sako, T.

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Scholz, U.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

Shimomitsu, T.

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Smith, D. S.

D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time-resolved spectroscopy and the determination of photon scattering, path length and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 511–516 (1993).
[CrossRef]

Stevenson, D. K.

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

Tamura, M.

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).

Tittel, F. K.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

Tsuchiya, Y.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

Tyszczuk, L.

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[CrossRef] [PubMed]

Ueda, Y.

M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
[CrossRef]

Urakami, T.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

van der Zee, P.

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[CrossRef]

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Spectral dependence of temporal point-spread functions in human tissue,” Appl. Opt. 32, 418–425 (1993).
[CrossRef] [PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).

Villringer, A.

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

M. Kohl, U. Lindauer, U. Dirnagl, A. Villringer, “Investigation of cortical spreading depression in rats by near infrared spectroscopy,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1988), pp. 21–22.

Walker, S. A.

Wang, L.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Wang, N.

D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time-resolved spectroscopy and the determination of photon scattering, path length and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 511–516 (1993).
[CrossRef]

Wei, Q.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Yamashita, Y.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

Yodh, A.

B. Chance, A. Yodh, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995), and references therein.
[CrossRef]

Zaccanti, G.

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Adv. Exp. Med. Biol. (1)

M. Essenpreis, M. Cope, C. E. Elwell, S. R. Arridge, P. van der Zee, D. T. Delpy, “Wavelength dependence of the differential path length factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).
[CrossRef]

Anal. Biochem. (2)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, “Performance comparison of several published tissue near infrared spectroscopy algorithms,” Anal. Biochem. 227, 54–68 (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

Biomed. Opt. NewsEtc (1)

S. Jacques, “Optical properties of Intralipid, an aqueous suspension of lipid droplets,” Biomed. Opt. NewsEtc April (1998), http://ece.ogi.edu/omlc/news .

Clin. Chem. (1)

W. G. Zijlstra, A. Buursma, W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

IEEE J. Quantum Electron. (1)

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Time-resolved reflectance: a systematic study for the application to the optical characterization of tissue,” IEEE J. Quantum Electron. 30, 2421–2430 (1994).
[CrossRef]

J. Cogn. Neurosci. (1)

G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corbellis, E. Gratton, “Rapid changes of optical parameters in the human brain during a tapping task,” J. Cogn. Neurosci. 7, 446–456 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Special issue on Diffusing Photons in Turbid Media, J. Opt. Soc. Am. A 14(1), (1997).

J. Photochem. Photobiol. B (1)

M. Ferrari, Q. Wei, L. Carraresi, R. A. De Blasi, G. Zaccanti, “Time-resolved spectroscopy of the human forearm,” J. Photochem. Photobiol. B 16, 141–153 (1992).
[CrossRef] [PubMed]

Med. Phys. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

Med. Sci. Sports Exercise (1)

T. Hamaoka, H. Iwane, T. Katsumura, T. Shimomitsu, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, M. Miwa, B. Chance, “The quantitative measures of muscle oxygenation by near infrared time-resolved spectroscopy,” Med. Sci. Sports Exercise 28, S62 (1996).
[CrossRef]

Opt. Commun. (1)

H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer–Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998).
[CrossRef]

Opt. Lett. (2)

Philos. Trans. R. Soc. London B (1)

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. London B 352, 727–735 (1997).
[CrossRef]

Phys. Med. Biol. (8)

S. J. Matcher, C. E. Cooper, “Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy,” Phys. Med. Biol. 39, 1295–1312 (1995).
[CrossRef]

S. J. Matcher, M. Cope, D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near infrared spectroscopy,” Phys. Med. Biol. 38, 177–196 (1993).

Special issue on Optical Radiation Techniques in Medicine and Biology, Phys. Med. Biol. 42(5), (1997).

M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996).
[CrossRef] [PubMed]

M. Kohl, C. Nolte, H. R. Heekeren, S. Horst, U. Scholz, H. Olbrig, A. Villringer, “Determination of the wavelength dependence of the differential path length factor from near infrared pulse signals,” Phys. Med. Biol. 43, 1771–1782 (1998).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, D. T. Delpy, “The theoretical basis for the determination of optical path lengths in tissues: temporal and frequency analysis,” Phys. Med. Biol. 37, 1531–1560 (1992).
[CrossRef] [PubMed]

A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, D. T. Delpy, “Optical path length measurements on the adult head, calf and forearm and the head of the newborn infant using phase-resolved spectroscopy,” Phys. Med. Biol. 40, 295–304 (1995).
[CrossRef] [PubMed]

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40, 1957–1975 (1995).
[CrossRef] [PubMed]

Phys. Today (1)

B. Chance, A. Yodh, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995), and references therein.
[CrossRef]

Rev. Sci. Instrum. (1)

G. A. Millikan, “The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man,” Rev. Sci. Instrum. 13, 434–444 (1942).
[CrossRef]

Science (2)

D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993).
[CrossRef] [PubMed]

For classical studies, see, for example, F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977); B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. Boretsky, “Comparison of time-resolved and unresolved measurements of deoxyhaemoglobin in brain,” Proc. Natl. Acad. Sci. 85, 4971–4975 (1989). For recent studies, see, for example, D. A. Benaron, B. Chance, M. Ferrari eds., Photon propagation in Tissue III, Proc. SPIE3194 (1998); J. G. Fujimoto, M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 21 of OSA Trends in Optics and Photonics Series and M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, (Optical Society of America, Washington D.C., 1998).

Transplantation (1)

T. Kitai, B. Beauvoit, B. Chance, “Optical determination of fatty change of the graft liver with near-infrared time-resolved spectroscopy,” Transplantation 62, 642–647 (1996).
[CrossRef] [PubMed]

Other (5)

M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995).
[CrossRef]

D. S. Smith, W. J. Levy, S. Carter, N. Wang, M. Haida, B. Chance, “Time-resolved spectroscopy and the determination of photon scattering, path length and brain vascular hemoglobin saturation in a population of normal volunteers,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, A. Katzir, eds., Proc. SPIE1888, 511–516 (1993).
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, Cambridge, 1992).

S. A. Prahl, “Optical absorption of hemoglobin,” Biomed. Opt. NewsEtcJune (1998), http://ece.ogi.edu/omlc/news .

M. Kohl, U. Lindauer, U. Dirnagl, A. Villringer, “Investigation of cortical spreading depression in rats by near infrared spectroscopy,” in Advances in Optical Imaging and Photon Migration, J. G. Fujimoto, M. S. Patterson, eds., Vol. 21 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1988), pp. 21–22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup of the TCSPC system for dual-wavelength time-resolved reflectance measurements. PMT, photomultiplier; SYNC, synchronization.

Fig. 2
Fig. 2

Typical time-resolved reflectance curves and reference pulses. Note, in each reference pulse, the presence of the characteristic afterpulse of the PMT. The arrows mark a FWHM of 200 ps.

Fig. 3
Fig. 3

Single collection measurements at 672 nm (filled diamonds) and 818 nm (open diamonds): (a) The absorption coefficient μ a and (b) the reduced-scattering coefficient μ s ′ as functions of the ink concentrations. (c) The absorption coefficient μ a and (d) the reduced-scattering coefficient μ s ′ as functions of the Intralipid concentrations.

Fig. 4
Fig. 4

Multiple collection measurements at 672 nm: (a) the absorption coefficient μ a and (b) the reduced-scattering coefficient μ s ′ as functions of the ink concentrations for the four collection fibers.

Fig. 5
Fig. 5

Measured versus expected ink concentrations for (a) solution A, (b) solution B, (c) solution C, (d) solution D (see Table 4). The straight dashed lines represent the total ink, blue ink, and green ink expected concentrations. Note that the line for the total ink concentration is superimposed on the green ink line and on the blue ink line in plots (a) and (b), respectively.

Fig. 6
Fig. 6

Absorption coefficient μ a at (a) 672 nm and (b) 818 nm. Reduced-scattering coefficient μ s ′ at (c) 672 nm and (d) 818 nm. The coefficients are plotted as functions of time during the cuff-occlusion experiment. The two vertical lines in each plot indicate the times when the cuff is inflated (left-hand line) and deflated (right-hand line).

Fig. 7
Fig. 7

(a) Hemoglobin saturation Y and (b) the THC as functions of time during the cuff-occlusion experiment. The two vertical lines indicate the times when the cuff is inflated (left-hand line) and deflated (right-hand line).

Fig. 8
Fig. 8

Hemoglobin saturation Y during recovery after cuff deflation. The acquisition time is 100 ms/point with an injected power of <100 µW. The vertical line indicates the time when the cuff is deflated.

Tables (4)

Tables Icon

Table 1 Extinction Coefficient ∊ of Black Ink at 672 and 818 nm as Derived from Time-Resolved Reflectance and cw Measurementsa

Tables Icon

Table 2 Extinction Coefficient ∊ of Black Ink at 672 and 818 nm as Derived from Time-Resolved Reflectance Measurements for the Case of Multiple Acquisitions

Tables Icon

Table 3 Extinction Coefficient ∊ of Blue Ink and Green Ink at 672 and 818 nm

Tables Icon

Table 4 Ink Composition of the Solutions Under Test

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C1=μaλ12λ2-μaλ22λ11λ12λ2-1λ22λ1, C2=μaλ21λ1-μaλ11λ21λ12λ2-1λ22λ1.
Rρ, t=124πvD-3/2t-5/2 exp-μa vtexp-ρ24Dvt×z0 exp-z024Dvt-z0+2ze×exp-z0+2ze24Dvt,

Metrics