Abstract

We describe a serial bideposition technique in which a tilted substrate is rotated stepwise by half a turn about a normal axis during the evaporation of a metal oxide from a single electron-beam source. Coatings formed by the new method develop a columnar nanostructure that is perpendicular to the substrate and has greatest width or bunching perpendicular to the common deposition plane. With appropriate choice of deposition parameters, the method produces biaxial films with large birefringence, principal axes aligned parallel and perpendicular to the substrate, and improved uniformity. Measured phase retardances for light incident normally on the films are double the corresponding values for tilted-columnar films.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens, J. J. Wharton, “Measurement of the principal refractive indices of thin films deposited at oblique incidence,” J. Opt. Soc. Am. A 2, 1693–1697 (1985).
    [CrossRef]
  2. F. Horowitz, H. A. Macleod, “Determination of principal refractive indices of birefringent films,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 203–206.
  3. T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989).
    [CrossRef] [PubMed]
  4. E. Pelletier, F. Flory, Y. Hu, “Optical characterization of thin films by guided waves,” Appl. Opt. 28, 2918–2924 (1989).
    [CrossRef] [PubMed]
  5. F. Flory, D. Endelema, E. Pelletier, I. J. Hodgkinson, “Anisotropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993).
    [CrossRef] [PubMed]
  6. F. Horowitz, S. B. Mendes, “Envelope and waveguide methods: a comparative study of PbF2 and CeO2 birefringent films,” Appl. Opt. 33, 2659–2663 (1994).
    [CrossRef] [PubMed]
  7. Q. H. Wu, I. J. Hodgkinson, “Materials for birefringent coatings,” Opt. Photon. News 5(5), S9–S10 (1994).
  8. H. Wang, “Determination of optical constants of absorbing crystalline thin films from reflectance and transmittance measurements with oblique incidence,” J. Opt. Soc. Am. A 11, 2331–2337 (1994).
    [CrossRef]
  9. A. Zuber, H. Jänchen, N. Kaiser, “Perpendicular-incidence photometric ellipsometry of biaxial anisotropic thin films,” Appl. Opt. 35, 5553–5556 (1996).
    [CrossRef] [PubMed]
  10. H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
    [CrossRef]
  11. I. J. Hodgkinson, Q. H. Wu, J. C. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely-deposited films of tantalum oxide, titanium oxide and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
    [CrossRef]
  12. A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
    [CrossRef]
  13. M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2848–2854 (1992).
    [CrossRef]
  14. T. Motohiro, Y. Takeda, T. Hioki, S. Noda, “Simultaneous oblique deposition from opposite azimuthal directions for fabrication of thin film retardation plates,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 214–217 (1996).
    [CrossRef]
  15. I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.
  16. I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
    [CrossRef]
  17. H. K. Pulker, “Characterization of optical thin films,” Appl. Opt. 18, 1969–1977 (1979).
    [CrossRef] [PubMed]

1998 (1)

1996 (2)

A. Zuber, H. Jänchen, N. Kaiser, “Perpendicular-incidence photometric ellipsometry of biaxial anisotropic thin films,” Appl. Opt. 35, 5553–5556 (1996).
[CrossRef] [PubMed]

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

1994 (4)

A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
[CrossRef]

H. Wang, “Determination of optical constants of absorbing crystalline thin films from reflectance and transmittance measurements with oblique incidence,” J. Opt. Soc. Am. A 11, 2331–2337 (1994).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, “Materials for birefringent coatings,” Opt. Photon. News 5(5), S9–S10 (1994).

F. Horowitz, S. B. Mendes, “Envelope and waveguide methods: a comparative study of PbF2 and CeO2 birefringent films,” Appl. Opt. 33, 2659–2663 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2848–2854 (1992).
[CrossRef]

1989 (2)

1985 (1)

1979 (1)

Brett, M. J.

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

Endelema, D.

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

F. Flory, D. Endelema, E. Pelletier, I. J. Hodgkinson, “Anisotropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993).
[CrossRef] [PubMed]

Flory, F.

Hazel, J. C.

Hioki, T.

T. Motohiro, Y. Takeda, T. Hioki, S. Noda, “Simultaneous oblique deposition from opposite azimuthal directions for fabrication of thin film retardation plates,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 214–217 (1996).
[CrossRef]

Hodgkinson, I. J.

I. J. Hodgkinson, Q. H. Wu, J. C. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely-deposited films of tantalum oxide, titanium oxide and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, “Materials for birefringent coatings,” Opt. Photon. News 5(5), S9–S10 (1994).

F. Flory, D. Endelema, E. Pelletier, I. J. Hodgkinson, “Anisotropy in thin films: modeling and measurement of guided and nonguided optical properties: application to TiO2 films,” Appl. Opt. 32, 5649–5659 (1993).
[CrossRef] [PubMed]

I. J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens, J. J. Wharton, “Measurement of the principal refractive indices of thin films deposited at oblique incidence,” J. Opt. Soc. Am. A 2, 1693–1697 (1985).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
[CrossRef]

Horowitz, F.

Hu, Y.

Jänchen, H.

A. Zuber, H. Jänchen, N. Kaiser, “Perpendicular-incidence photometric ellipsometry of biaxial anisotropic thin films,” Appl. Opt. 35, 5553–5556 (1996).
[CrossRef] [PubMed]

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

Kaiser, N.

A. Zuber, H. Jänchen, N. Kaiser, “Perpendicular-incidence photometric ellipsometry of biaxial anisotropic thin films,” Appl. Opt. 35, 5553–5556 (1996).
[CrossRef] [PubMed]

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
[CrossRef]

Macleod, H. A.

I. J. Hodgkinson, F. Horowitz, H. A. Macleod, M. Sikkens, J. J. Wharton, “Measurement of the principal refractive indices of thin films deposited at oblique incidence,” J. Opt. Soc. Am. A 2, 1693–1697 (1985).
[CrossRef]

F. Horowitz, H. A. Macleod, “Determination of principal refractive indices of birefringent films,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 203–206.

Mendes, S. B.

Messier, R.

A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
[CrossRef]

Motohiro, T.

T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989).
[CrossRef] [PubMed]

T. Motohiro, Y. Takeda, T. Hioki, S. Noda, “Simultaneous oblique deposition from opposite azimuthal directions for fabrication of thin film retardation plates,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 214–217 (1996).
[CrossRef]

Noda, S.

T. Motohiro, Y. Takeda, T. Hioki, S. Noda, “Simultaneous oblique deposition from opposite azimuthal directions for fabrication of thin film retardation plates,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 214–217 (1996).
[CrossRef]

Pelletier, E.

Pulker, H. K.

Robbie, K.

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

Sikkens, M.

Suzuki, M.

M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2848–2854 (1992).
[CrossRef]

Taga, Y.

M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2848–2854 (1992).
[CrossRef]

T. Motohiro, Y. Taga, “Thin film retardation plate by oblique deposition,” Appl. Opt. 28, 2466–2482 (1989).
[CrossRef] [PubMed]

Takeda, Y.

T. Motohiro, Y. Takeda, T. Hioki, S. Noda, “Simultaneous oblique deposition from opposite azimuthal directions for fabrication of thin film retardation plates,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 214–217 (1996).
[CrossRef]

Wang, H.

Wharton, J. J.

Wu, Q. H.

I. J. Hodgkinson, Q. H. Wu, J. C. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely-deposited films of tantalum oxide, titanium oxide and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998).
[CrossRef]

Q. H. Wu, I. J. Hodgkinson, “Materials for birefringent coatings,” Opt. Photon. News 5(5), S9–S10 (1994).

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

Zuber, A.

Appl. Opt. (7)

J. Appl. Phys. (1)

M. Suzuki, Y. Taga, “Anisotropy in the optical absorption of Ag-SiO2 thin films with oblique columnar structures,” J. Appl. Phys. 71, 2848–2854 (1992).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

A. Lakhtakia, R. Messier, “Reflection at the Motohiro-Taga interface of two anisotropic materials with columnar microstructures,” Opt. Eng. 33, 2529–2534 (1994).
[CrossRef]

Opt. Photon. News (1)

Q. H. Wu, I. J. Hodgkinson, “Materials for birefringent coatings,” Opt. Photon. News 5(5), S9–S10 (1994).

Pure Appl. Opt. (1)

H. Jänchen, D. Endelema, N. Kaiser, F. Flory, “Determination of the refractive indices of highly biaxial anisotropic coatings using guided modes,” Pure Appl. Opt. 5, 405–415 (1996).
[CrossRef]

Other (4)

F. Horowitz, H. A. Macleod, “Determination of principal refractive indices of birefringent films,” in Optical Interference Coatings, Vol. 6 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 203–206.

T. Motohiro, Y. Takeda, T. Hioki, S. Noda, “Simultaneous oblique deposition from opposite azimuthal directions for fabrication of thin film retardation plates,” in International Symposium on Polarization Analysis and Applications to Device Technology, T. Yoshizawa, H. Yokota, eds., Proc. SPIE2873, 214–217 (1996).
[CrossRef]

I. J. Hodgkinson, Q. H. Wu, M. J. Brett, K. Robbie, “Vacuum deposition of biaxial films with surface-aligned principal axes and large birefringence Δn,” in Optical Interference Coatings, Vol. 9 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 104–106.

I. J. Hodgkinson, Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

In the serial bideposition of a biaxial medium, small subdeposits are made in turn for substrate positions specified by ξ = 0, π, 2π, 3π, … . An anisotropic nanostructure develops with principal axes (1, 2, 3) aligned with the x, y, and z axes.

Fig. 2
Fig. 2

Transmittance curve recorded during the bideposition of a titanium oxide film. The monitor light was incident normally and polarized along the y axis in Fig. 1.

Fig. 3
Fig. 3

Upper: Setup for recording angular retardance maps. The substrate is rotated about the x axis and about the z axis to acquire data for a map of Δ(β cos ξ, β sin ξ) where β = sin θ. The ellipsometer has the rotating compensator, fixed analyzer configuration. Lower: Setup for areal scanning; in this case the substrate is moved to a grid of positions in the yz plane.

Fig. 4
Fig. 4

Effect of varying the thickness of the subdeposit.

Fig. 5
Fig. 5

Values of n 2, n 3, and Δn measured in the experiments. Note that the label TiO2 refers to patinal titanium oxide S granules that have a chemical composition between Ti3O5 and Ti4O7.

Fig. 6
Fig. 6

Upper: Angular scanning map recorded for a titanium oxide film deposited obliquely at 70°. Lower: Angular scanning map recorded for a cerium oxide film formed by serial bideposition at 70°.

Fig. 7
Fig. 7

Upper: Areal map recorded for the titanium oxide film deposited obliquely. Lower: Areal map recorded for the cerium oxide film formed by serial bideposition.

Tables (1)

Tables Icon

Table 1 Materials and Parameters for Serial Bideposition

Metrics