Abstract

We propose a novel, to our knowledge, silicon planar-apertured probe array as an optical head for high-density near-field optical storage. In comparison with a conventional fiber probe employed for near-field optical storage the apertured probe array has a higher readout data-transmission rate and better mechanical durability. A probe array with an aperture size of 100 nm was fabricated by use of photolithography and wet etching of a silicon wafer. Subwavelength-readout capability was demonstrated by use of one aperture of the probe array. Furthermore, we achieved a 16 times increase in the light-transmission efficiency of the probe array by installing glass-sphere microlenses on each aperture. The increase was confirmed by measurement of the near-field optical intensity.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
    [CrossRef]
  2. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [CrossRef]
  3. S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, M. Ohtsu, “High localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173–177 (1994).
    [CrossRef]
  4. S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
    [CrossRef]
  5. G. A. Valaskovic, M. Holton, G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995).
    [CrossRef] [PubMed]
  6. M. Stahelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Granacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
    [CrossRef]
  7. K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 37, 2274–2278 (1998).
    [CrossRef]
  8. M. Ohtsu, K. Tsutsui, M. Kourogi, M. B. Lee, “Near field optics and its application to optical memory,” Electron. Commun. Jpn. Part 2, 81(8), 41–48 (1998).
    [CrossRef]
  9. M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “A near-field planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998).
  10. T. Pangaribuan, S. Jiang, M. Ohtsu, “High controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
    [CrossRef]
  11. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [CrossRef]
  12. R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
    [CrossRef]

1998 (2)

K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 37, 2274–2278 (1998).
[CrossRef]

M. Ohtsu, K. Tsutsui, M. Kourogi, M. B. Lee, “Near field optics and its application to optical memory,” Electron. Commun. Jpn. Part 2, 81(8), 41–48 (1998).
[CrossRef]

1996 (2)

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

M. Stahelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Granacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

1995 (1)

1994 (3)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

T. Pangaribuan, S. Jiang, M. Ohtsu, “High controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[CrossRef]

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, M. Ohtsu, “High localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173–177 (1994).
[CrossRef]

1992 (3)

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Atoda, N.

M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “A near-field planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998).

Betzig, E.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Bopp, M. A.

M. Stahelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Granacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Chang, C.-H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Chen, Y.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Fujihira, M.

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, M. Ohtsu, “High localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173–177 (1994).
[CrossRef]

Fujita, K.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

Goto, K.

K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 37, 2274–2278 (1998).
[CrossRef]

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Hirotsune, A.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

Holton, M.

Hosaka, S.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

Ichihashi, J.

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, M. Ohtsu, “High localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173–177 (1994).
[CrossRef]

Ishimura, S.

M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “A near-field planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998).

Jiang, S.

T. Pangaribuan, S. Jiang, M. Ohtsu, “High controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[CrossRef]

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, M. Ohtsu, “High localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173–177 (1994).
[CrossRef]

Kammer, S.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Kourogi, M.

M. Ohtsu, K. Tsutsui, M. Kourogi, M. B. Lee, “Near field optics and its application to optical memory,” Electron. Commun. Jpn. Part 2, 81(8), 41–48 (1998).
[CrossRef]

M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “A near-field planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998).

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Lee, M. B.

M. Ohtsu, K. Tsutsui, M. Kourogi, M. B. Lee, “Near field optics and its application to optical memory,” Electron. Commun. Jpn. Part 2, 81(8), 41–48 (1998).
[CrossRef]

M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “A near-field planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998).

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Meixner, A. J.

M. Stahelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Granacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Miyamoto, M.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

Monobe, H.

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, M. Ohtsu, “High localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173–177 (1994).
[CrossRef]

Morrison, G. H.

Ohtsu, M.

M. Ohtsu, K. Tsutsui, M. Kourogi, M. B. Lee, “Near field optics and its application to optical memory,” Electron. Commun. Jpn. Part 2, 81(8), 41–48 (1998).
[CrossRef]

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, M. Ohtsu, “High localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173–177 (1994).
[CrossRef]

T. Pangaribuan, S. Jiang, M. Ohtsu, “High controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[CrossRef]

M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “A near-field planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998).

Pangaribuan, T.

T. Pangaribuan, S. Jiang, M. Ohtsu, “High controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Shintani, T.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

Stahelin, M.

M. Stahelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Granacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Tarrach, G.

M. Stahelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Granacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Terao, M.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

Toledo-Crow, R.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Tsutsui, K.

M. Ohtsu, K. Tsutsui, M. Kourogi, M. B. Lee, “Near field optics and its application to optical memory,” Electron. Commun. Jpn. Part 2, 81(8), 41–48 (1998).
[CrossRef]

M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “A near-field planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998).

Vaez-Iravani, M.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Valaskovic, G. A.

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Yang, P. C.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Yatsui, T.

M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “A near-field planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998).

Yoshida, M.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

Zschokke-Granacher, I.

M. Stahelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Granacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

M. Stahelin, M. A. Bopp, G. Tarrach, A. J. Meixner, I. Zschokke-Granacher, “Temperature profile of fiber tips used in scanning near-field optical microscopy,” Appl. Phys. Lett. 68, 2603–2605 (1996).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear force and near-field scanning optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Electron. Commun. Jpn. (1)

M. Ohtsu, K. Tsutsui, M. Kourogi, M. B. Lee, “Near field optics and its application to optical memory,” Electron. Commun. Jpn. Part 2, 81(8), 41–48 (1998).
[CrossRef]

Jpn. J. Appl. Phys. (2)

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, S. Kammer, “Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[CrossRef]

K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 37, 2274–2278 (1998).
[CrossRef]

Opt. Commun. (1)

S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, M. Ohtsu, “High localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope,” Opt. Commun. 106, 173–177 (1994).
[CrossRef]

Scanning (1)

T. Pangaribuan, S. Jiang, M. Ohtsu, “High controllable fabrication of fiber probe for photon scanning tunneling microscope,” Scanning 16, 362–367 (1994).
[CrossRef]

Other (1)

M. Kourogi, T. Yatsui, S. Ishimura, M. B. Lee, N. Atoda, K. Tsutsui, M. Ohtsu, “A near-field planar apertured probe array for optical near-field memory,” in Far- and Near-Field Optics: Physics and Information Processing, S. Jutamulia, T. Asakura, eds., Proc. SPIE3467, 258–267 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams of the recording and the readout principles for the proposed probe array: (a) Setup for recording by use of a spatially modulated propagating light incident upon the probe array and for readout by detection of the scattered light. (b) Readout by means of scanning the array with a tilt angle θ. The dashed lines represent the scanning trajectories of each aperture. L, separation between adjacent apertures in the array; D, separation between adjacent dashed lines.

Fig. 2
Fig. 2

Fabrication process for the silicon planar-apertured probe array: (a) the initial wafer, (b) formation of the window regions, (c) formation of the inverted pyramid-shaped grooves, (d) oxide removal and gold deposition, (e) installation of the glass spheres and cutting of the edge. The inset shows that the aperture size d is determined by the pattern size W and the SOI wafer thickness t.

Fig. 3
Fig. 3

Scanning electron micrographs of the fabricated probe arrays: (a) before installation of the glass-sphere lenses, (b) enlargement of one aperture viewed from the bottom side, (c) after installation of the glass-sphere lenses.

Fig. 4
Fig. 4

Experimental setup for readout by use of the planar-apertured probe. PMT, photomultiplier.

Fig. 5
Fig. 5

Cross-sectional distribution of the transmitted light. Curves A and B represent results obtained without and with the probe, respectively. The vertical axis gives the detected optical power normalized to the peak power of the light detected without the probe.

Fig. 6
Fig. 6

Experimental setup of the SNOM for evaluation of the probe. LD, laser diode; PZT, piezoelectric transducer; PMT, photomultiplier.

Fig. 7
Fig. 7

SNOM images of the apertures with a scan area of 700 nm × 700 nm in the probe array (a) without and (b) with a glass-sphere lens. SNOM cross-sectional spatial distributions of the output light (c) shown in (a) and (d) shown in (b).

Metrics