Abstract

Optical computerized tomography (OCT) technology is used to reconstruct the asymmetric three-dimensional temperature field generated by radiators and electronic chips. First, the OCT method is described. Second, the reconstructed results are tested by a double-cylinder radiator model. Finally, OCT is applied to reconstruction of the temperature field above the surface of a CPU. The air-temperature field above a CPU circuit can be imaged with an OCT system that reflects whether the heat production from different parts of the CPU is even; therefore possibly the technique can be used to determine whether the integrated-circuit design in the CPU is smart.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisschaften Mannigfaltigkeiten,” Ber. Sachs. Wiss. Leipzig Math. Phys. Kl. 69, 262–267 (1917).
  2. R. Snyder, L. Hesselink, “Measurement of mixing fluid flows with optical tomography,” Opt. Lett. 13, 87–89 (1985).
    [CrossRef]
  3. Maruyama, “Tomography of asymmetric temperature field by a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 16, 1171–1176 (1977).
  4. T. M. Kreis, “Computer aided evaluation of fringe patterns,” Opt. Lasers Eng. 19, 221–240 (1993).
    [CrossRef]
  5. G. T. Reid, “Automatic fringe pattern analysis: a review,” Opt. Lasers Eng. 11, 37–68 (1986).
    [CrossRef]
  6. C. M. Vest, “Tomography for properties of materials that bend rays: a tutorial,” Appl. Opt. 24, 4089–4094 (1985).
    [CrossRef] [PubMed]
  7. D. Wu, W. Yao, A. He, “Rotary interferometer used in the optical CT,” Microwave Opt. Technol. Lett. 19, 64–66 (1998).
    [CrossRef]
  8. D. W. Robinson, “Automatic evaluation with a computer image processing system,” Appl. Opt. 22, 2169–2176 (1983).
    [CrossRef]
  9. W. Joo, S. S. Cha, “Automated interferogram analysis based on an integrated expert system,” Appl. Opt. 34, 7486–7496 (1995).
    [CrossRef] [PubMed]
  10. J. Pavlidis, Structure Pattern Recognition (Springer-Verlag, Berlin, 1977), pp. 222–226.
  11. C. Arcelli, L. Cordella, S. Leviadi, “Parallel thinning of binary pictures,” Electron. Lett. 11, 148–152 (1975).
    [CrossRef]
  12. D. Wu, Z. Wang, W. Yao, A. He, “Three-dimensional tomography for asymmetric field containing opaque object,” Opt. Eng. 37, 2255–2258 (1998).
    [CrossRef]
  13. D. W. Sweeny, C. M. Vest, “Reconstruction of a three-dimensional refractive index field from multidirection interferometric data,” Appl. Opt. 12, 2649–2664 (1973).
    [CrossRef]
  14. P. T. Radulovic, “Holographic interferometry of asymmetric temperature or density field,” Ph.D. dissertation (The University of Michigan, Ann Arbor, Mich., 1977).

1998 (2)

D. Wu, W. Yao, A. He, “Rotary interferometer used in the optical CT,” Microwave Opt. Technol. Lett. 19, 64–66 (1998).
[CrossRef]

D. Wu, Z. Wang, W. Yao, A. He, “Three-dimensional tomography for asymmetric field containing opaque object,” Opt. Eng. 37, 2255–2258 (1998).
[CrossRef]

1995 (1)

1993 (1)

T. M. Kreis, “Computer aided evaluation of fringe patterns,” Opt. Lasers Eng. 19, 221–240 (1993).
[CrossRef]

1986 (1)

G. T. Reid, “Automatic fringe pattern analysis: a review,” Opt. Lasers Eng. 11, 37–68 (1986).
[CrossRef]

1985 (2)

1983 (1)

1977 (1)

Maruyama, “Tomography of asymmetric temperature field by a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 16, 1171–1176 (1977).

1975 (1)

C. Arcelli, L. Cordella, S. Leviadi, “Parallel thinning of binary pictures,” Electron. Lett. 11, 148–152 (1975).
[CrossRef]

1973 (1)

1917 (1)

J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisschaften Mannigfaltigkeiten,” Ber. Sachs. Wiss. Leipzig Math. Phys. Kl. 69, 262–267 (1917).

Arcelli, C.

C. Arcelli, L. Cordella, S. Leviadi, “Parallel thinning of binary pictures,” Electron. Lett. 11, 148–152 (1975).
[CrossRef]

Cha, S. S.

Cordella, L.

C. Arcelli, L. Cordella, S. Leviadi, “Parallel thinning of binary pictures,” Electron. Lett. 11, 148–152 (1975).
[CrossRef]

He, A.

D. Wu, W. Yao, A. He, “Rotary interferometer used in the optical CT,” Microwave Opt. Technol. Lett. 19, 64–66 (1998).
[CrossRef]

D. Wu, Z. Wang, W. Yao, A. He, “Three-dimensional tomography for asymmetric field containing opaque object,” Opt. Eng. 37, 2255–2258 (1998).
[CrossRef]

Hesselink, L.

Joo, W.

Kreis, T. M.

T. M. Kreis, “Computer aided evaluation of fringe patterns,” Opt. Lasers Eng. 19, 221–240 (1993).
[CrossRef]

Leviadi, S.

C. Arcelli, L. Cordella, S. Leviadi, “Parallel thinning of binary pictures,” Electron. Lett. 11, 148–152 (1975).
[CrossRef]

Maruyama,

Maruyama, “Tomography of asymmetric temperature field by a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 16, 1171–1176 (1977).

Pavlidis, J.

J. Pavlidis, Structure Pattern Recognition (Springer-Verlag, Berlin, 1977), pp. 222–226.

Radon, J.

J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisschaften Mannigfaltigkeiten,” Ber. Sachs. Wiss. Leipzig Math. Phys. Kl. 69, 262–267 (1917).

Radulovic, P. T.

P. T. Radulovic, “Holographic interferometry of asymmetric temperature or density field,” Ph.D. dissertation (The University of Michigan, Ann Arbor, Mich., 1977).

Reid, G. T.

G. T. Reid, “Automatic fringe pattern analysis: a review,” Opt. Lasers Eng. 11, 37–68 (1986).
[CrossRef]

Robinson, D. W.

Snyder, R.

Sweeny, D. W.

Vest, C. M.

Wang, Z.

D. Wu, Z. Wang, W. Yao, A. He, “Three-dimensional tomography for asymmetric field containing opaque object,” Opt. Eng. 37, 2255–2258 (1998).
[CrossRef]

Wu, D.

D. Wu, W. Yao, A. He, “Rotary interferometer used in the optical CT,” Microwave Opt. Technol. Lett. 19, 64–66 (1998).
[CrossRef]

D. Wu, Z. Wang, W. Yao, A. He, “Three-dimensional tomography for asymmetric field containing opaque object,” Opt. Eng. 37, 2255–2258 (1998).
[CrossRef]

Yao, W.

D. Wu, W. Yao, A. He, “Rotary interferometer used in the optical CT,” Microwave Opt. Technol. Lett. 19, 64–66 (1998).
[CrossRef]

D. Wu, Z. Wang, W. Yao, A. He, “Three-dimensional tomography for asymmetric field containing opaque object,” Opt. Eng. 37, 2255–2258 (1998).
[CrossRef]

Appl. Opt. (4)

Ber. Sachs. Wiss. Leipzig Math. Phys. Kl. (1)

J. Radon, “Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisschaften Mannigfaltigkeiten,” Ber. Sachs. Wiss. Leipzig Math. Phys. Kl. 69, 262–267 (1917).

Electron. Lett. (1)

C. Arcelli, L. Cordella, S. Leviadi, “Parallel thinning of binary pictures,” Electron. Lett. 11, 148–152 (1975).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Maruyama, “Tomography of asymmetric temperature field by a Mach–Zehnder interferometer,” Jpn. J. Appl. Phys. 16, 1171–1176 (1977).

Microwave Opt. Technol. Lett. (1)

D. Wu, W. Yao, A. He, “Rotary interferometer used in the optical CT,” Microwave Opt. Technol. Lett. 19, 64–66 (1998).
[CrossRef]

Opt. Eng. (1)

D. Wu, Z. Wang, W. Yao, A. He, “Three-dimensional tomography for asymmetric field containing opaque object,” Opt. Eng. 37, 2255–2258 (1998).
[CrossRef]

Opt. Lasers Eng. (2)

T. M. Kreis, “Computer aided evaluation of fringe patterns,” Opt. Lasers Eng. 19, 221–240 (1993).
[CrossRef]

G. T. Reid, “Automatic fringe pattern analysis: a review,” Opt. Lasers Eng. 11, 37–68 (1986).
[CrossRef]

Opt. Lett. (1)

Other (2)

J. Pavlidis, Structure Pattern Recognition (Springer-Verlag, Berlin, 1977), pp. 222–226.

P. T. Radulovic, “Holographic interferometry of asymmetric temperature or density field,” Ph.D. dissertation (The University of Michigan, Ann Arbor, Mich., 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the rotary interferometer.

Fig. 2
Fig. 2

Image processing of an interferometric fringe: (a) Original interferogram; (b) fixed value binary; (c) automatic value binary; (d) edge detection; (e) skeleton of the fringe.

Fig. 3
Fig. 3

Eight frames of the projection interferogram of a two-cylinder model with different angles.

Fig. 4
Fig. 4

Reconstructed temperature distribution and topography of the cross section (5 mm below the top of the cylinder): (a) temperature distribution of the cross section with 10 iterations; (b) topography of the cross section with 10 iterations; (c) temperature distribution of the cross section with 20 iterations; (d) topography of the cross section with 20 iterations; (e) temperature distribution of the cross section with 30 iterations; (f) topography of the cross section with 30 iterations.

Fig. 5
Fig. 5

Comparison of the reconstructed results with the measured result. Series 1 shows the measured results, and series 2 shows the reconstructed results.

Fig. 6
Fig. 6

Six projections of the temperature field generated by a CPU (1°, 30°, 60°, 75°, 90°, 120° projections are shown).

Fig. 7
Fig. 7

Reconstructed temperature distribution of the selected cross section (2 mm above the CPU surface): Top, temperature topography of the cross section; bottom, temperature distribution of the cross section.

Fig. 8
Fig. 8

Comparison of the reconstructed results with the measured result. Series 1 is the reconstructed results; series 2 is the measured results with a thermocouple.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Φ=2π/λ Lnx, y, z0-n0ds,
Ir=|A|2 exp-2πr2/b2,
Ir=1/I0 exp2πr2/b2.
Ix, y=Bx, y+Ax, ycosPx, y,
pˆ=ω˜*p,
G0x, y=12πσ2exp-x2+y22σ2.
pˆx, y=G0x, y*px, y.
2=δ2δx2+δ2δy2
2G0x, y*px, y=2G0x, y*px, y
2G0x, y=-1πσ41-x2+y22σ2exp-x2+y22σ2,
φp, θ=1/λ  nx, y-n0δp-x cos θ-y sin θdxdy
φip, θ=k=1n Δnkx, y, zAik,
Δnkix, y, z=Δnki-1x, y, z+ω φip, θ-k=1n Δnkx, y, zAikk=1n Aik-Aik Aik, i=1, 2,  , I,

Metrics