Abstract

A two-wavelength method for a fast shape measurement by use of a pulsed ruby laser is presented. The wavelength change is produced by alteration of the distance between the plates of the laser’s output etalon. One plate of the etalon is mounted on a vibrating piezoelectric element; this allows a fast wavelength change. Two holograms at different wavelengths are recorded in a few microseconds by use of a CCD. The holograms are reconstructed digitally, and the wave-front phase is calculated. The shape is obtained by subtraction of the phases of the wave fronts recorded at different wavelengths. Environmental disturbances at low frequencies, such as air turbulence, vibrations, and object drift, have no influence on the measurement. Experimental results are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), Chap. 7, pp. 387–456.
  2. R. Jones, C. Wikes, Holographic and Speckle Interferometry, 2nd ed., Vol. 6 of Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, 1989).
  3. A. A. Friesem, U. Levy, “Fringe formation in two-wavelength contour holography,” Appl. Opt. 15, 3009–3020 (1976).
    [CrossRef] [PubMed]
  4. L. O. Heflinger, R. F. Wuerker, “Holographic contouring via multifrequency lasers,” Appl. Phys. Lett. 15, 28–30 (1969).
    [CrossRef]
  5. Y.-L. Zou, X. Peng, H. J. Tiziani, “Two-wavelength DSPI surface contouring through the temperature modulation of a laser diode,” Optik (Stuttgart) 94, 155–158 (1993).
  6. Y.-L. Zou, G. Pedrini, H. J. Tiziani, “Surface contouring in a video frame by changing the wavelength of a laser diode,” Opt. Eng. 35, 1074–1079 (1996).
    [CrossRef]
  7. G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV holography,” Opt. Laser Eng. 26, 199–219 (1997).
    [CrossRef]
  8. G. Pedrini, H. Tiziani, “Quantitative evaluation of two-dimensional dynamic deformations using digital holography,” Opt. Laser Technol. 29, 249–256 (1997).
    [CrossRef]
  9. G. Pedrini, Ph. Froening, H. Fessler, H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1997).
    [CrossRef]
  10. Y. L. Zou, G. Pedrini, H. J. Tiziani, “Two-wavelength contouring with a pulsed ruby laser by employing TV holography,” J. Mod. Opt. 43, 639–646 (1996).
  11. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996), Chap. 8, pp. 452–499.
    [CrossRef]

1997 (3)

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

G. Pedrini, H. Tiziani, “Quantitative evaluation of two-dimensional dynamic deformations using digital holography,” Opt. Laser Technol. 29, 249–256 (1997).
[CrossRef]

G. Pedrini, Ph. Froening, H. Fessler, H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1997).
[CrossRef]

1996 (2)

Y. L. Zou, G. Pedrini, H. J. Tiziani, “Two-wavelength contouring with a pulsed ruby laser by employing TV holography,” J. Mod. Opt. 43, 639–646 (1996).

Y.-L. Zou, G. Pedrini, H. J. Tiziani, “Surface contouring in a video frame by changing the wavelength of a laser diode,” Opt. Eng. 35, 1074–1079 (1996).
[CrossRef]

1993 (1)

Y.-L. Zou, X. Peng, H. J. Tiziani, “Two-wavelength DSPI surface contouring through the temperature modulation of a laser diode,” Optik (Stuttgart) 94, 155–158 (1993).

1976 (1)

1969 (1)

L. O. Heflinger, R. F. Wuerker, “Holographic contouring via multifrequency lasers,” Appl. Phys. Lett. 15, 28–30 (1969).
[CrossRef]

Fessler, H.

G. Pedrini, Ph. Froening, H. Fessler, H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1997).
[CrossRef]

Friesem, A. A.

Froening, Ph.

G. Pedrini, Ph. Froening, H. Fessler, H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1997).
[CrossRef]

Heflinger, L. O.

L. O. Heflinger, R. F. Wuerker, “Holographic contouring via multifrequency lasers,” Appl. Phys. Lett. 15, 28–30 (1969).
[CrossRef]

Jones, R.

R. Jones, C. Wikes, Holographic and Speckle Interferometry, 2nd ed., Vol. 6 of Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, 1989).

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996), Chap. 8, pp. 452–499.
[CrossRef]

Levy, U.

Pedrini, G.

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

G. Pedrini, Ph. Froening, H. Fessler, H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1997).
[CrossRef]

G. Pedrini, H. Tiziani, “Quantitative evaluation of two-dimensional dynamic deformations using digital holography,” Opt. Laser Technol. 29, 249–256 (1997).
[CrossRef]

Y.-L. Zou, G. Pedrini, H. J. Tiziani, “Surface contouring in a video frame by changing the wavelength of a laser diode,” Opt. Eng. 35, 1074–1079 (1996).
[CrossRef]

Y. L. Zou, G. Pedrini, H. J. Tiziani, “Two-wavelength contouring with a pulsed ruby laser by employing TV holography,” J. Mod. Opt. 43, 639–646 (1996).

Peng, X.

Y.-L. Zou, X. Peng, H. J. Tiziani, “Two-wavelength DSPI surface contouring through the temperature modulation of a laser diode,” Optik (Stuttgart) 94, 155–158 (1993).

Tiziani, H.

G. Pedrini, H. Tiziani, “Quantitative evaluation of two-dimensional dynamic deformations using digital holography,” Opt. Laser Technol. 29, 249–256 (1997).
[CrossRef]

G. Pedrini, Ph. Froening, H. Fessler, H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1997).
[CrossRef]

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Tiziani, H. J.

Y.-L. Zou, G. Pedrini, H. J. Tiziani, “Surface contouring in a video frame by changing the wavelength of a laser diode,” Opt. Eng. 35, 1074–1079 (1996).
[CrossRef]

Y. L. Zou, G. Pedrini, H. J. Tiziani, “Two-wavelength contouring with a pulsed ruby laser by employing TV holography,” J. Mod. Opt. 43, 639–646 (1996).

Y.-L. Zou, X. Peng, H. J. Tiziani, “Two-wavelength DSPI surface contouring through the temperature modulation of a laser diode,” Optik (Stuttgart) 94, 155–158 (1993).

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), Chap. 7, pp. 387–456.

Wikes, C.

R. Jones, C. Wikes, Holographic and Speckle Interferometry, 2nd ed., Vol. 6 of Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, 1989).

Wuerker, R. F.

L. O. Heflinger, R. F. Wuerker, “Holographic contouring via multifrequency lasers,” Appl. Phys. Lett. 15, 28–30 (1969).
[CrossRef]

Zou, Y.

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Zou, Y. L.

Y. L. Zou, G. Pedrini, H. J. Tiziani, “Two-wavelength contouring with a pulsed ruby laser by employing TV holography,” J. Mod. Opt. 43, 639–646 (1996).

Zou, Y.-L.

Y.-L. Zou, G. Pedrini, H. J. Tiziani, “Surface contouring in a video frame by changing the wavelength of a laser diode,” Opt. Eng. 35, 1074–1079 (1996).
[CrossRef]

Y.-L. Zou, X. Peng, H. J. Tiziani, “Two-wavelength DSPI surface contouring through the temperature modulation of a laser diode,” Optik (Stuttgart) 94, 155–158 (1993).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. O. Heflinger, R. F. Wuerker, “Holographic contouring via multifrequency lasers,” Appl. Phys. Lett. 15, 28–30 (1969).
[CrossRef]

J. Mod. Opt. (1)

Y. L. Zou, G. Pedrini, H. J. Tiziani, “Two-wavelength contouring with a pulsed ruby laser by employing TV holography,” J. Mod. Opt. 43, 639–646 (1996).

Opt. Eng. (1)

Y.-L. Zou, G. Pedrini, H. J. Tiziani, “Surface contouring in a video frame by changing the wavelength of a laser diode,” Opt. Eng. 35, 1074–1079 (1996).
[CrossRef]

Opt. Laser Eng. (1)

G. Pedrini, H. Tiziani, Y. Zou, “Digital double pulse-TV holography,” Opt. Laser Eng. 26, 199–219 (1997).
[CrossRef]

Opt. Laser Technol. (2)

G. Pedrini, H. Tiziani, “Quantitative evaluation of two-dimensional dynamic deformations using digital holography,” Opt. Laser Technol. 29, 249–256 (1997).
[CrossRef]

G. Pedrini, Ph. Froening, H. Fessler, H. Tiziani, “Transient vibration measurements using multipulse digital holography,” Opt. Laser Technol. 29, 505–511 (1997).
[CrossRef]

Optik (Stuttgart) (1)

Y.-L. Zou, X. Peng, H. J. Tiziani, “Two-wavelength DSPI surface contouring through the temperature modulation of a laser diode,” Optik (Stuttgart) 94, 155–158 (1993).

Other (3)

W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996), Chap. 8, pp. 452–499.
[CrossRef]

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), Chap. 7, pp. 387–456.

R. Jones, C. Wikes, Holographic and Speckle Interferometry, 2nd ed., Vol. 6 of Cambridge Studies in Modern Optics (Cambridge U. Press, Cambridge, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Modification of a ruby laser for the generation of two wavelengths.

Fig. 2
Fig. 2

Schematic diagram of the spectral output of a pulsed ruby laser.

Fig. 3
Fig. 3

Setup for digital holographic contouring. AP, aperture; BS, beam splitter; M, mirror.

Fig. 4
Fig. 4

Time and spectral diagrams: (a) The driving signal. U pq(t) is the voltage applied to the piezoelectric mirror. (b) The laser output energy I L(t) of the pulses. (c) The output spectrum q(λ).

Fig. 5
Fig. 5

Shape measurement of a vase. The contour-line intervals are (a) 14.3 mm and (b) 7.1 mm. (c) A 3-D representation of the object calculated by means of unwrapping the phase map shown in (b). The scale is in millimeters.

Fig. 6
Fig. 6

Contour measurement of a vase taken while it was held by a human hand. The contour-line interval is 7.1 mm.

Fig. 7
Fig. 7

(a), (b) Contour measurements of a human fist in two different positions. (c) Hologram of the fist recorded together with the vase to permit observation of the differences in quality of the fringes.

Metrics