Abstract

The collision-induced absorption of oxygen in the 540–650-nm wavelength region has been measured at a pressure range from 0 to 730 Torr at T = 294 K. Pressure-dependent cross sections of the X 3g+ + X 3g+a 1Δg(v = 0) + a 1Δg(v = 1) and X 3g+ + X 3g+a 1Δg(v = 0) + a 1Δg(v = 0) transitions have been determined by means of cavity-ringdown spectroscopy. Contributions of the overlapping γ and δ bands of O2 have been evaded, and Rayleigh extinction has been taken into account.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Janssen, “Analyse spectrale des éléments de l’atmosphère terrestre,” C. R. Acad. Sci. 101, 649–651 (1885).
  2. J. W. Ellis, H. O. Kneser, “Kombinationsbeziehungen im Absorptionsspektrum des flüsigen Sauerstoffes,” Z. Phys. 86, 583–591 (1933).
    [CrossRef]
  3. H. Salow, W. Steiner, “Die durch Wechselwirkungskräfte bedingten Absorptionsspektra des Sauerstoffes, 1. Die Absorptionsbanden des (O2–O2)-Moleküls,” Z. Phys. 99, 137–158 (1936).
    [CrossRef]
  4. R. P. Blickensderfer, G. E. Ewing, “Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressures. II. The simultaneous transitions 3∑g+ + 3∑g+ → 1Δg + 1Δg and 3∑g+ + 3∑g+ → 1Δg + 1∑g+,” J. Chem. Phys. 51, 5284–5289 (1969).
    [CrossRef]
  5. Shardanand, “Absorption cross sections of O2 and O4 between 2000 and 2800 Å,” Phys. Rev. 186, 5–9 (1969).
    [CrossRef]
  6. V. I. Dianov-Klokov, “Absorption spectrum of oxygen at pressures from 2 to 35 atm. in the region 12,600 to 3600 Å,” Opt. Spectrosc. 16, 224–227 (1964).
  7. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorptions measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
    [CrossRef]
  8. D. A. Newnham, J. Ballard, “Visible absorption cross-sections and integrated absorption intensities of molecular oxygen (O2 and O4),” J. Geophys. Res. 103, 28801–28816 (1998).
    [CrossRef]
  9. P. E. S. Wormer, A. van der Avoird, “(Heisenberg)exchange and electrostatic interactions between O2 molecules: An ab initio study,” J. Chem. Phys. 81, 1929–1940 (1984).
    [CrossRef]
  10. C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
    [CrossRef]
  11. A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
    [CrossRef]
  12. H. M. Bevsek, M. Ahmed, D. S. Peterka, F. C. Sailes, A. G. Suits, “Direct detection and spectroscopy of O4,” Faraday Discuss. Chem. Soc. 108, 131–138 (1997).
    [CrossRef]
  13. D. Perner, U. Platt, “Absorption of light in the atmosphere by collision pairs of oxygen (O2)2,” Geophys. Res. Lett. 7, 1053–1056 (1980).
    [CrossRef]
  14. K. Pfeilsticker, F. Erle, U. Platt, “Absorption of solar radiation by atmospheric O4,” J. Atmos. Sci. 54, 933–939 (1997).
    [CrossRef]
  15. S. Solomon, R. W. Portmann, R. W. Sanders, J. S. Daniel, “Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth’s atmosphere,” J. Geophys. Res. 104, 3847–3858 (1998).
    [CrossRef]
  16. F. Erle, K. Pfeilsticker, U. Platt, “On the influence of tropospheric clouds on zenith-scattered-light measurements of stratospheric species,” Geophys. Res. Lett. 22, 2725–2728 (1995).
    [CrossRef]
  17. H. B. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” Astrophys. J. 108, 167–190 (1948).
    [CrossRef]
  18. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
    [CrossRef]
  19. H. Naus, A. de Lange, W. Ubachs, “b1∑g+ - X3∑g+ (0,0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in 16O2,” Phys. Rev. A 56, 4755–4763 (1997).
    [CrossRef]
  20. S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule de l’Iode entre 14800–20000 cm-1 (Centre National de la Recherche Scientifique, Paris, 1978).
  21. P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
    [CrossRef]
  22. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity-ring-down-spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
    [CrossRef]
  23. A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [CrossRef] [PubMed]
  24. R. C. Weast, ed., Handbook of Chemistry and Physics, 62nd ed. (CRC, Boca Raton, Fla., 1981–1982), p. E-381.
  25. N. J. Bridge, A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. (London) A 295, 334–349 (1966).
    [CrossRef]
  26. A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980).
    [CrossRef] [PubMed]

1998 (4)

D. A. Newnham, J. Ballard, “Visible absorption cross-sections and integrated absorption intensities of molecular oxygen (O2 and O4),” J. Geophys. Res. 103, 28801–28816 (1998).
[CrossRef]

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

S. Solomon, R. W. Portmann, R. W. Sanders, J. S. Daniel, “Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth’s atmosphere,” J. Geophys. Res. 104, 3847–3858 (1998).
[CrossRef]

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

1997 (3)

H. Naus, A. de Lange, W. Ubachs, “b1∑g+ - X3∑g+ (0,0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in 16O2,” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

H. M. Bevsek, M. Ahmed, D. S. Peterka, F. C. Sailes, A. G. Suits, “Direct detection and spectroscopy of O4,” Faraday Discuss. Chem. Soc. 108, 131–138 (1997).
[CrossRef]

K. Pfeilsticker, F. Erle, U. Platt, “Absorption of solar radiation by atmospheric O4,” J. Atmos. Sci. 54, 933–939 (1997).
[CrossRef]

1995 (4)

F. Erle, K. Pfeilsticker, U. Platt, “On the influence of tropospheric clouds on zenith-scattered-light measurements of stratospheric species,” Geophys. Res. Lett. 22, 2725–2728 (1995).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity-ring-down-spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

A. Bucholtz, “Rayleigh-scattering calculations for the terrestrial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[CrossRef] [PubMed]

1990 (1)

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorptions measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

1984 (1)

P. E. S. Wormer, A. van der Avoird, “(Heisenberg)exchange and electrostatic interactions between O2 molecules: An ab initio study,” J. Chem. Phys. 81, 1929–1940 (1984).
[CrossRef]

1980 (2)

D. Perner, U. Platt, “Absorption of light in the atmosphere by collision pairs of oxygen (O2)2,” Geophys. Res. Lett. 7, 1053–1056 (1980).
[CrossRef]

A. T. Young, “Revised depolarization corrections for atmospheric extinction,” Appl. Opt. 19, 3427–3428 (1980).
[CrossRef] [PubMed]

1973 (1)

C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
[CrossRef]

1969 (2)

R. P. Blickensderfer, G. E. Ewing, “Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressures. II. The simultaneous transitions 3∑g+ + 3∑g+ → 1Δg + 1Δg and 3∑g+ + 3∑g+ → 1Δg + 1∑g+,” J. Chem. Phys. 51, 5284–5289 (1969).
[CrossRef]

Shardanand, “Absorption cross sections of O2 and O4 between 2000 and 2800 Å,” Phys. Rev. 186, 5–9 (1969).
[CrossRef]

1966 (1)

N. J. Bridge, A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. (London) A 295, 334–349 (1966).
[CrossRef]

1964 (1)

V. I. Dianov-Klokov, “Absorption spectrum of oxygen at pressures from 2 to 35 atm. in the region 12,600 to 3600 Å,” Opt. Spectrosc. 16, 224–227 (1964).

1948 (1)

H. B. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” Astrophys. J. 108, 167–190 (1948).
[CrossRef]

1936 (1)

H. Salow, W. Steiner, “Die durch Wechselwirkungskräfte bedingten Absorptionsspektra des Sauerstoffes, 1. Die Absorptionsbanden des (O2–O2)-Moleküls,” Z. Phys. 99, 137–158 (1936).
[CrossRef]

1933 (1)

J. W. Ellis, H. O. Kneser, “Kombinationsbeziehungen im Absorptionsspektrum des flüsigen Sauerstoffes,” Z. Phys. 86, 583–591 (1933).
[CrossRef]

1885 (1)

J. Janssen, “Analyse spectrale des éléments de l’atmosphère terrestre,” C. R. Acad. Sci. 101, 649–651 (1885).

Ahmed, M.

H. M. Bevsek, M. Ahmed, D. S. Peterka, F. C. Sailes, A. G. Suits, “Direct detection and spectroscopy of O4,” Faraday Discuss. Chem. Soc. 108, 131–138 (1997).
[CrossRef]

Ashfold, M. N. R.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Babcock, H. B.

H. B. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” Astrophys. J. 108, 167–190 (1948).
[CrossRef]

Bacis, R.

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

Ballard, J.

D. A. Newnham, J. Ballard, “Visible absorption cross-sections and integrated absorption intensities of molecular oxygen (O2 and O4),” J. Geophys. Res. 103, 28801–28816 (1998).
[CrossRef]

Bevsek, H. M.

H. M. Bevsek, M. Ahmed, D. S. Peterka, F. C. Sailes, A. G. Suits, “Direct detection and spectroscopy of O4,” Faraday Discuss. Chem. Soc. 108, 131–138 (1997).
[CrossRef]

Biennier, L.

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

Blickensderfer, R. P.

R. P. Blickensderfer, G. E. Ewing, “Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressures. II. The simultaneous transitions 3∑g+ + 3∑g+ → 1Δg + 1Δg and 3∑g+ + 3∑g+ → 1Δg + 1∑g+,” J. Chem. Phys. 51, 5284–5289 (1969).
[CrossRef]

Boogaarts, M. G. H.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity-ring-down-spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Bridge, N. J.

N. J. Bridge, A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. (London) A 295, 334–349 (1966).
[CrossRef]

Bucholtz, A.

Buckingham, A. D.

N. J. Bridge, A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. (London) A 295, 334–349 (1966).
[CrossRef]

Burkholder, J. B.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorptions measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

Bussery-Honvault, B.

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

Campargue, A.

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

Churassy, S.

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

Daniel, J. S.

S. Solomon, R. W. Portmann, R. W. Sanders, J. S. Daniel, “Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth’s atmosphere,” J. Geophys. Res. 104, 3847–3858 (1998).
[CrossRef]

de Lange, A.

H. Naus, A. de Lange, W. Ubachs, “b1∑g+ - X3∑g+ (0,0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in 16O2,” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

Dianov-Klokov, V. I.

V. I. Dianov-Klokov, “Absorption spectrum of oxygen at pressures from 2 to 35 atm. in the region 12,600 to 3600 Å,” Opt. Spectrosc. 16, 224–227 (1964).

Ellis, J. W.

J. W. Ellis, H. O. Kneser, “Kombinationsbeziehungen im Absorptionsspektrum des flüsigen Sauerstoffes,” Z. Phys. 86, 583–591 (1933).
[CrossRef]

Erle, F.

K. Pfeilsticker, F. Erle, U. Platt, “Absorption of solar radiation by atmospheric O4,” J. Atmos. Sci. 54, 933–939 (1997).
[CrossRef]

F. Erle, K. Pfeilsticker, U. Platt, “On the influence of tropospheric clouds on zenith-scattered-light measurements of stratospheric species,” Geophys. Res. Lett. 22, 2725–2728 (1995).
[CrossRef]

Ewing, G. E.

C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
[CrossRef]

R. P. Blickensderfer, G. E. Ewing, “Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressures. II. The simultaneous transitions 3∑g+ + 3∑g+ → 1Δg + 1Δg and 3∑g+ + 3∑g+ → 1Δg + 1∑g+,” J. Chem. Phys. 51, 5284–5289 (1969).
[CrossRef]

Gerstenkorn, S.

S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule de l’Iode entre 14800–20000 cm-1 (Centre National de la Recherche Scientifique, Paris, 1978).

Greenblatt, G. D.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorptions measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

Herzberg, L.

H. B. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” Astrophys. J. 108, 167–190 (1948).
[CrossRef]

Holleman, I.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity-ring-down-spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Janssen, J.

J. Janssen, “Analyse spectrale des éléments de l’atmosphère terrestre,” C. R. Acad. Sci. 101, 649–651 (1885).

Jongma, R. T.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity-ring-down-spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Jost, R.

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

Kachanov, A.

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

Kneser, H. O.

J. W. Ellis, H. O. Kneser, “Kombinationsbeziehungen im Absorptionsspektrum des flüsigen Sauerstoffes,” Z. Phys. 86, 583–591 (1933).
[CrossRef]

Long, C. A.

C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
[CrossRef]

Luc, P.

S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule de l’Iode entre 14800–20000 cm-1 (Centre National de la Recherche Scientifique, Paris, 1978).

Meijer, G.

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity-ring-down-spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Naus, H.

H. Naus, A. de Lange, W. Ubachs, “b1∑g+ - X3∑g+ (0,0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in 16O2,” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

Newman, S. M.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Newnham, D. A.

D. A. Newnham, J. Ballard, “Visible absorption cross-sections and integrated absorption intensities of molecular oxygen (O2 and O4),” J. Geophys. Res. 103, 28801–28816 (1998).
[CrossRef]

Orlando, J. J.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorptions measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

Orr-Ewing, A. J.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Perner, D.

D. Perner, U. Platt, “Absorption of light in the atmosphere by collision pairs of oxygen (O2)2,” Geophys. Res. Lett. 7, 1053–1056 (1980).
[CrossRef]

Peterka, D. S.

H. M. Bevsek, M. Ahmed, D. S. Peterka, F. C. Sailes, A. G. Suits, “Direct detection and spectroscopy of O4,” Faraday Discuss. Chem. Soc. 108, 131–138 (1997).
[CrossRef]

Pfeilsticker, K.

K. Pfeilsticker, F. Erle, U. Platt, “Absorption of solar radiation by atmospheric O4,” J. Atmos. Sci. 54, 933–939 (1997).
[CrossRef]

F. Erle, K. Pfeilsticker, U. Platt, “On the influence of tropospheric clouds on zenith-scattered-light measurements of stratospheric species,” Geophys. Res. Lett. 22, 2725–2728 (1995).
[CrossRef]

Platt, U.

K. Pfeilsticker, F. Erle, U. Platt, “Absorption of solar radiation by atmospheric O4,” J. Atmos. Sci. 54, 933–939 (1997).
[CrossRef]

F. Erle, K. Pfeilsticker, U. Platt, “On the influence of tropospheric clouds on zenith-scattered-light measurements of stratospheric species,” Geophys. Res. Lett. 22, 2725–2728 (1995).
[CrossRef]

D. Perner, U. Platt, “Absorption of light in the atmosphere by collision pairs of oxygen (O2)2,” Geophys. Res. Lett. 7, 1053–1056 (1980).
[CrossRef]

Portmann, R. W.

S. Solomon, R. W. Portmann, R. W. Sanders, J. S. Daniel, “Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth’s atmosphere,” J. Geophys. Res. 104, 3847–3858 (1998).
[CrossRef]

Ravishankara, A. R.

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorptions measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

Sailes, F. C.

H. M. Bevsek, M. Ahmed, D. S. Peterka, F. C. Sailes, A. G. Suits, “Direct detection and spectroscopy of O4,” Faraday Discuss. Chem. Soc. 108, 131–138 (1997).
[CrossRef]

Salow, H.

H. Salow, W. Steiner, “Die durch Wechselwirkungskräfte bedingten Absorptionsspektra des Sauerstoffes, 1. Die Absorptionsbanden des (O2–O2)-Moleküls,” Z. Phys. 99, 137–158 (1936).
[CrossRef]

Sanders, R. W.

S. Solomon, R. W. Portmann, R. W. Sanders, J. S. Daniel, “Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth’s atmosphere,” J. Geophys. Res. 104, 3847–3858 (1998).
[CrossRef]

Shardanand,

Shardanand, “Absorption cross sections of O2 and O4 between 2000 and 2800 Å,” Phys. Rev. 186, 5–9 (1969).
[CrossRef]

Solomon, S.

S. Solomon, R. W. Portmann, R. W. Sanders, J. S. Daniel, “Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth’s atmosphere,” J. Geophys. Res. 104, 3847–3858 (1998).
[CrossRef]

Steiner, W.

H. Salow, W. Steiner, “Die durch Wechselwirkungskräfte bedingten Absorptionsspektra des Sauerstoffes, 1. Die Absorptionsbanden des (O2–O2)-Moleküls,” Z. Phys. 99, 137–158 (1936).
[CrossRef]

Suits, A. G.

H. M. Bevsek, M. Ahmed, D. S. Peterka, F. C. Sailes, A. G. Suits, “Direct detection and spectroscopy of O4,” Faraday Discuss. Chem. Soc. 108, 131–138 (1997).
[CrossRef]

Ubachs, W.

H. Naus, A. de Lange, W. Ubachs, “b1∑g+ - X3∑g+ (0,0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in 16O2,” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

van der Avoird, A.

P. E. S. Wormer, A. van der Avoird, “(Heisenberg)exchange and electrostatic interactions between O2 molecules: An ab initio study,” J. Chem. Phys. 81, 1929–1940 (1984).
[CrossRef]

Veyret, V.

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

Wheeler, M. D.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

Wormer, P. E. S.

P. E. S. Wormer, A. van der Avoird, “(Heisenberg)exchange and electrostatic interactions between O2 molecules: An ab initio study,” J. Chem. Phys. 81, 1929–1940 (1984).
[CrossRef]

Young, A. T.

Zalicki, P.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Zare, R. N.

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

Appl. Opt. (2)

Astrophys. J. (1)

H. B. Babcock, L. Herzberg, “Fine structure of the red system of atmospheric oxygen bands,” Astrophys. J. 108, 167–190 (1948).
[CrossRef]

C. R. Acad. Sci. (1)

J. Janssen, “Analyse spectrale des éléments de l’atmosphère terrestre,” C. R. Acad. Sci. 101, 649–651 (1885).

Chem. Phys. Lett. (1)

A. Campargue, L. Biennier, A. Kachanov, R. Jost, B. Bussery-Honvault, V. Veyret, S. Churassy, R. Bacis, “Rotationally resolved absorption spectrum of the O2 dimer in the visible range,” Chem. Phys. Lett. 288, 734–742 (1998).
[CrossRef]

Faraday Discuss. Chem. Soc. (1)

H. M. Bevsek, M. Ahmed, D. S. Peterka, F. C. Sailes, A. G. Suits, “Direct detection and spectroscopy of O4,” Faraday Discuss. Chem. Soc. 108, 131–138 (1997).
[CrossRef]

Geophys. Res. Lett. (2)

D. Perner, U. Platt, “Absorption of light in the atmosphere by collision pairs of oxygen (O2)2,” Geophys. Res. Lett. 7, 1053–1056 (1980).
[CrossRef]

F. Erle, K. Pfeilsticker, U. Platt, “On the influence of tropospheric clouds on zenith-scattered-light measurements of stratospheric species,” Geophys. Res. Lett. 22, 2725–2728 (1995).
[CrossRef]

J. Atmos. Sci. (1)

K. Pfeilsticker, F. Erle, U. Platt, “Absorption of solar radiation by atmospheric O4,” J. Atmos. Sci. 54, 933–939 (1997).
[CrossRef]

J. Chem. Phys. (4)

R. P. Blickensderfer, G. E. Ewing, “Collision-induced absorption spectrum of gaseous oxygen at low temperatures and pressures. II. The simultaneous transitions 3∑g+ + 3∑g+ → 1Δg + 1Δg and 3∑g+ + 3∑g+ → 1Δg + 1∑g+,” J. Chem. Phys. 51, 5284–5289 (1969).
[CrossRef]

P. E. S. Wormer, A. van der Avoird, “(Heisenberg)exchange and electrostatic interactions between O2 molecules: An ab initio study,” J. Chem. Phys. 81, 1929–1940 (1984).
[CrossRef]

C. A. Long, G. E. Ewing, “Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2,” J. Chem. Phys. 58, 4824–4834 (1973).
[CrossRef]

P. Zalicki, R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys. 102, 2708–2717 (1995).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, M. N. R. Ashfold, “Cavity ring-down spectroscopy,” J. Chem. Soc. Faraday Trans. 94, 337–351 (1998).
[CrossRef]

J. Geophys. Res. (3)

S. Solomon, R. W. Portmann, R. W. Sanders, J. S. Daniel, “Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth’s atmosphere,” J. Geophys. Res. 104, 3847–3858 (1998).
[CrossRef]

G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, A. R. Ravishankara, “Absorptions measurements of oxygen between 330 and 1140 nm,” J. Geophys. Res. 95, 18577–18582 (1990).
[CrossRef]

D. A. Newnham, J. Ballard, “Visible absorption cross-sections and integrated absorption intensities of molecular oxygen (O2 and O4),” J. Geophys. Res. 103, 28801–28816 (1998).
[CrossRef]

Opt. Spectrosc. (1)

V. I. Dianov-Klokov, “Absorption spectrum of oxygen at pressures from 2 to 35 atm. in the region 12,600 to 3600 Å,” Opt. Spectrosc. 16, 224–227 (1964).

Phys. Rev. (1)

Shardanand, “Absorption cross sections of O2 and O4 between 2000 and 2800 Å,” Phys. Rev. 186, 5–9 (1969).
[CrossRef]

Phys. Rev. A (1)

H. Naus, A. de Lange, W. Ubachs, “b1∑g+ - X3∑g+ (0,0) band of oxygen isotopomers in relation to tests of the symmetrization postulate in 16O2,” Phys. Rev. A 56, 4755–4763 (1997).
[CrossRef]

Proc. R. Soc. (London) A (1)

N. J. Bridge, A. D. Buckingham, “The polarization of laser light scattered by gases,” Proc. R. Soc. (London) A 295, 334–349 (1966).
[CrossRef]

Rev. Sci. Instrum. (1)

R. T. Jongma, M. G. H. Boogaarts, I. Holleman, G. Meijer, “Trace gas detection with cavity-ring-down-spectroscopy,” Rev. Sci. Instrum. 66, 2821–2828 (1995).
[CrossRef]

Z. Phys. (2)

J. W. Ellis, H. O. Kneser, “Kombinationsbeziehungen im Absorptionsspektrum des flüsigen Sauerstoffes,” Z. Phys. 86, 583–591 (1933).
[CrossRef]

H. Salow, W. Steiner, “Die durch Wechselwirkungskräfte bedingten Absorptionsspektra des Sauerstoffes, 1. Die Absorptionsbanden des (O2–O2)-Moleküls,” Z. Phys. 99, 137–158 (1936).
[CrossRef]

Other (2)

S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule de l’Iode entre 14800–20000 cm-1 (Centre National de la Recherche Scientifique, Paris, 1978).

R. C. Weast, ed., Handbook of Chemistry and Physics, 62nd ed. (CRC, Boca Raton, Fla., 1981–1982), p. E-381.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic display of the experimental setup: a/d, analog-to-digital converter; pd, photodiode; PMT, photomultiplier tube.

Fig. 2
Fig. 2

(a) N2 extinction versus pressure at 570 and 650 nm (β0 subtracted), (b) the unweighted residue at 650 nm (σ = 6.3 × 10-9 cm-1), (c) the unweighted residue at 570 nm (σ = 1.8 × 10-9 cm-1).

Fig. 3
Fig. 3

O2 loss curves (β0 subtracted) at three different frequencies (I, 17401.1 cm-1; II, 17206.1 cm-1; III, 16887.7 cm-1). The insets show the weighted residues of a second-order polynomial fit.

Fig. 4
Fig. 4

Uncertainty in the quadratic coefficient κsq is largely reduced in the far wing of the absorption if the linear coefficient is kept fixed at the estimated value from Eq. (10).

Fig. 5
Fig. 5

(O2)2 collision-induced absorption cross section. The solid curve represents the skewed Voigt profiles fitted to the data.

Fig. 6
Fig. 6

Absorption cross sections of (O2)2 from the works of Greenblatt et al.7 and Newnham and Ballard8 and this work. The data of Ref. 8 are fitted to a functional form for better comparison (see text).

Tables (2)

Tables Icon

Table 1 Band Parameters of the X 3g+ + X 3g+a 1Δg + a 1Δg Resonancea

Tables Icon

Table 2 Band Parameters of the X 3g+ + X 3g+a 1Δg + a 1Δg(v = 1) Resonancea

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

It=It=0 exp-cd|lnR|t,
β0=c|lnR|d.
It=It=0 exp-cd|lnR|+κlt,
β=cd|lnR|+κl.
κ=β-β0c.
σν¯=24π3ν¯4ns2-12Ns2ns2+226+3ρs6-7ρs,
κN2,294Κν¯=1.35×10-27 ν¯4cm-1 Torr-1
κexpν¯=1.360.02×10-27 ν¯4cm-1 Torr-1
κO2P=β0+κlinP+κsq P2,
κlinO2ν¯=1.250.02×10-27 ν¯4cm-1 Torr-1.
κO2,294Κν¯=1.20×10-27 ν¯4cm-1 Torr-1.

Metrics