Abstract

The instrumental line shape (ILS) of two commercial high-resolution Fourier transform IR spectrometers has been analysed with gas cell measurements and a new ILS retrieval software LINEFIT. The instruments are used for atmospheric remote sounding, and the compatibility of the ILS deduced from laboratory gas cell measurements with the ILS in the atmospheric measurement itself is examined.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Delbouille, “Role of very-high-resolution FTS in recent determinations of the quantitative composition of the stratosphere,” in 9th International Conference on Fourier Transform Spectroscopy, H.-L. Dai, S. J. Sibener, eds., Proc. SPIE2089, 32–37 (1993).
    [CrossRef]
  2. N. S. Pougatchev, B. J. Connor, C. P. Rinsland, “Infrared measurements of the ozone vertical distribution above Kitt Peak,” J. Geophys. Res. 100, 16689–16697 (1995).
    [CrossRef]
  3. J. Chamberlain, The Principles of Interferometric Spectroscopy, (Wiley, New York, 1979), Section 8.2.
  4. Th. Blumenstock, H. Fischer, A. Friedle, F. Hase, P. Thomas, “Column amounts of ClONO2, HCl, HNO3, and HF from ground-based FTIR measurements made near Kiruna, Sweden, in late winter 1994,” J. Atmos. Chem. 26, 311–321 (1997).
    [CrossRef]
  5. T. G. Kyle, R. Blatherwick, “Smearing of interferograms in Fourier transform spectroscopy,” Appl. Opt. 23, 261–263 (1984).
    [CrossRef] [PubMed]
  6. A. Vance, W. Bell, C. Paton-Walsh, B. Jolliffe, “Fourier transform infra-red instrument line shape determination using an infra-red helium:neon laser and a low pressure gas cell,” in Polar Stratospheric Ozone 1997, (European Communities, Luxembourg, 1998), pp. 735–738.
  7. M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
    [CrossRef]

1998

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

1997

Th. Blumenstock, H. Fischer, A. Friedle, F. Hase, P. Thomas, “Column amounts of ClONO2, HCl, HNO3, and HF from ground-based FTIR measurements made near Kiruna, Sweden, in late winter 1994,” J. Atmos. Chem. 26, 311–321 (1997).
[CrossRef]

1995

N. S. Pougatchev, B. J. Connor, C. P. Rinsland, “Infrared measurements of the ozone vertical distribution above Kitt Peak,” J. Geophys. Res. 100, 16689–16697 (1995).
[CrossRef]

1984

Bell, W.

A. Vance, W. Bell, C. Paton-Walsh, B. Jolliffe, “Fourier transform infra-red instrument line shape determination using an infra-red helium:neon laser and a low pressure gas cell,” in Polar Stratospheric Ozone 1997, (European Communities, Luxembourg, 1998), pp. 735–738.

Bernardo, C.

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

Blatherwick, R.

Blumenstock, Th.

Th. Blumenstock, H. Fischer, A. Friedle, F. Hase, P. Thomas, “Column amounts of ClONO2, HCl, HNO3, and HF from ground-based FTIR measurements made near Kiruna, Sweden, in late winter 1994,” J. Atmos. Chem. 26, 311–321 (1997).
[CrossRef]

Chamberlain, J.

J. Chamberlain, The Principles of Interferometric Spectroscopy, (Wiley, New York, 1979), Section 8.2.

Coffey, M. T.

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

Connor, B. J.

N. S. Pougatchev, B. J. Connor, C. P. Rinsland, “Infrared measurements of the ozone vertical distribution above Kitt Peak,” J. Geophys. Res. 100, 16689–16697 (1995).
[CrossRef]

Delbouille, L.

L. Delbouille, “Role of very-high-resolution FTS in recent determinations of the quantitative composition of the stratosphere,” in 9th International Conference on Fourier Transform Spectroscopy, H.-L. Dai, S. J. Sibener, eds., Proc. SPIE2089, 32–37 (1993).
[CrossRef]

Fischer, H.

Th. Blumenstock, H. Fischer, A. Friedle, F. Hase, P. Thomas, “Column amounts of ClONO2, HCl, HNO3, and HF from ground-based FTIR measurements made near Kiruna, Sweden, in late winter 1994,” J. Atmos. Chem. 26, 311–321 (1997).
[CrossRef]

Friedle, A.

Th. Blumenstock, H. Fischer, A. Friedle, F. Hase, P. Thomas, “Column amounts of ClONO2, HCl, HNO3, and HF from ground-based FTIR measurements made near Kiruna, Sweden, in late winter 1994,” J. Atmos. Chem. 26, 311–321 (1997).
[CrossRef]

Goldman, A.

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

Griffith, D. W. T.

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

Hannigan, J. W.

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

Hase, F.

Th. Blumenstock, H. Fischer, A. Friedle, F. Hase, P. Thomas, “Column amounts of ClONO2, HCl, HNO3, and HF from ground-based FTIR measurements made near Kiruna, Sweden, in late winter 1994,” J. Atmos. Chem. 26, 311–321 (1997).
[CrossRef]

Jolliffe, B.

A. Vance, W. Bell, C. Paton-Walsh, B. Jolliffe, “Fourier transform infra-red instrument line shape determination using an infra-red helium:neon laser and a low pressure gas cell,” in Polar Stratospheric Ozone 1997, (European Communities, Luxembourg, 1998), pp. 735–738.

Kyle, T. G.

Mankin, W. G.

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

Paton-Walsh, C.

A. Vance, W. Bell, C. Paton-Walsh, B. Jolliffe, “Fourier transform infra-red instrument line shape determination using an infra-red helium:neon laser and a low pressure gas cell,” in Polar Stratospheric Ozone 1997, (European Communities, Luxembourg, 1998), pp. 735–738.

Pougatchev, N. S.

N. S. Pougatchev, B. J. Connor, C. P. Rinsland, “Infrared measurements of the ozone vertical distribution above Kitt Peak,” J. Geophys. Res. 100, 16689–16697 (1995).
[CrossRef]

Rinsland, C. P.

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

N. S. Pougatchev, B. J. Connor, C. P. Rinsland, “Infrared measurements of the ozone vertical distribution above Kitt Peak,” J. Geophys. Res. 100, 16689–16697 (1995).
[CrossRef]

Schoenfeld, W. G.

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

Thomas, P.

Th. Blumenstock, H. Fischer, A. Friedle, F. Hase, P. Thomas, “Column amounts of ClONO2, HCl, HNO3, and HF from ground-based FTIR measurements made near Kiruna, Sweden, in late winter 1994,” J. Atmos. Chem. 26, 311–321 (1997).
[CrossRef]

Vance, A.

A. Vance, W. Bell, C. Paton-Walsh, B. Jolliffe, “Fourier transform infra-red instrument line shape determination using an infra-red helium:neon laser and a low pressure gas cell,” in Polar Stratospheric Ozone 1997, (European Communities, Luxembourg, 1998), pp. 735–738.

Appl. Opt.

J. Atmos. Chem.

Th. Blumenstock, H. Fischer, A. Friedle, F. Hase, P. Thomas, “Column amounts of ClONO2, HCl, HNO3, and HF from ground-based FTIR measurements made near Kiruna, Sweden, in late winter 1994,” J. Atmos. Chem. 26, 311–321 (1997).
[CrossRef]

J. Geophys. Res.

N. S. Pougatchev, B. J. Connor, C. P. Rinsland, “Infrared measurements of the ozone vertical distribution above Kitt Peak,” J. Geophys. Res. 100, 16689–16697 (1995).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. T. Coffey, A. Goldman, J. W. Hannigan, W. G. Mankin, W. G. Schoenfeld, C. P. Rinsland, C. Bernardo, D. W. T. Griffith, “Improved vibration–rotation (0–1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements,” J. Quant. Spectrosc. Radiat. Transfer 60, 863–867 (1998).
[CrossRef]

Other

A. Vance, W. Bell, C. Paton-Walsh, B. Jolliffe, “Fourier transform infra-red instrument line shape determination using an infra-red helium:neon laser and a low pressure gas cell,” in Polar Stratospheric Ozone 1997, (European Communities, Luxembourg, 1998), pp. 735–738.

J. Chamberlain, The Principles of Interferometric Spectroscopy, (Wiley, New York, 1979), Section 8.2.

L. Delbouille, “Role of very-high-resolution FTS in recent determinations of the quantitative composition of the stratosphere,” in 9th International Conference on Fourier Transform Spectroscopy, H.-L. Dai, S. J. Sibener, eds., Proc. SPIE2089, 32–37 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two-dimensional parameter space for ILS description spanned by linear modulation loss and phase error. In the upper left-hand corner the ideal self-apodized ILS at 2000 cm-1 is shown. The assumed maximal optical path difference is 255 cm, and the interferometric acceptance angle is ±1.5 × 10-3 rad.

Fig. 2
Fig. 2

Fit results for one of four N2O spectral windows near 2200 cm-1. The cell measurement was performed on 10 October 1994 with the Bruker IFS 120M. Gas temperature, 296 K; pressure, 15 Pa. (a) The ideal ILS is assumed. The resulting column amount is 4.72 × 1020 m-2. (b) The simple ILS description is used. The resulting column amount is 4.95 × 1020 m-2. (c) The extended ILS description is used. The resulting column amount is 4.93 × 1020 m-2.

Fig. 3
Fig. 3

ILS’s corresponding to the fits shown in Fig. 2.

Fig. 4
Fig. 4

Modulation efficiency interferogram corresponding to the fit shown in Fig. 2(c).

Fig. 5
Fig. 5

Modulation efficiency interferogram and ILS deduced from the N2O measurement performed on 28 May 1997 with the Bruker IFS 120M. Gas temperature, 294 K; pressure, 15 Pa.

Fig. 6
Fig. 6

Modulation efficiency interferograms deduced from the N2O measurements performed on 12 December 1997, 3 June 1998, and 3 March 1998 with the Bruker 120HR. The cell has been refilled before each of the measurements. Gas temperatures, ∼293 K; pressures, ∼15 Pa.

Fig. 7
Fig. 7

Modulation efficiency interferograms deduced from a laboratory cell measurement performed on 14 March 1998 and from a solar cell measurement performed on 20 March 1998. The cells were filled with HBr at pressures of 21 and 44 Pa, respectively. Gas temperatures were 294 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

fi+1=fi+AiTAi-1AiTΔLi.
fi+1=AiTAi+γm2BmTBm+γp2BpTBp-1AiT×ΔLi+Aifi.

Metrics