Abstract

A theoretical model, believed to be novel, that describes simultaneous thermal lens and beam deflection phenomena was experimentally tested. The effect of beam deflection on thermal lens measurements and the effect of the thermal lens on beam deflection measurements were investigated. The experiment confirmed the validity of theoretical predictions for measurements of strongly absorbing samples for which the assumption of an unchanged pump beam in the sample is still valid.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bicanic, M. Franko, J. Gibkes, E. Gerkema, J. P. Favier, H. Jalink, “Applications of photoacoustic and photothermal non-contact methods in selected areas of environmental and agricultural sciences,” in Life and Earth Sciences, Vol. 3 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, P. Hess, eds. (SPIE Press, Bellingham, Wash., 1997), pp. 129–184.
  2. R. S. Erskine, D. R. Bobbitt, “Obliquely crossed, differential thermal lens measurements under conditions of high background absorbance,” Appl. Spectrosc. 43, 668–673 (1989).
    [CrossRef]
  3. M. Šikovec, M. Novič, M. Franko, “Application of thermal lens spectrometric detection to the determination of heavy metals by ion chromatography,” J. Chromatogr. A 739, 111–117 (1996).
    [CrossRef]
  4. Q. He, R. Vyas, R. Gupta, “Photothermal lensing detection: theory and experiment,” Appl. Opt. 36, 7046–7058 (1997).
    [CrossRef]
  5. R. Gupta, “Principles of photothermal and photoacoustic phenomena,” in Principles and Perspectives of Photothermal and Photoacoustic Phenomena, Vol. 1 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, ed. (Elsevier, New York, 1992), pp. 96–154.
  6. G. Močnik, M. Franko, Z. Bozoki, D. Bicanic, H. Jalink, “On the simultaneous effect of beam deflection and thermal lensing phenomena in photothermal spectrometry,” Instrum. Sci. Technol. 26, 289–303 (1998).
    [CrossRef]
  7. See, for example, B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), pp. 80–107.
  8. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]

1998 (1)

G. Močnik, M. Franko, Z. Bozoki, D. Bicanic, H. Jalink, “On the simultaneous effect of beam deflection and thermal lensing phenomena in photothermal spectrometry,” Instrum. Sci. Technol. 26, 289–303 (1998).
[CrossRef]

1997 (1)

1996 (1)

M. Šikovec, M. Novič, M. Franko, “Application of thermal lens spectrometric detection to the determination of heavy metals by ion chromatography,” J. Chromatogr. A 739, 111–117 (1996).
[CrossRef]

1989 (1)

1981 (1)

Amer, N. M.

Bicanic, D.

G. Močnik, M. Franko, Z. Bozoki, D. Bicanic, H. Jalink, “On the simultaneous effect of beam deflection and thermal lensing phenomena in photothermal spectrometry,” Instrum. Sci. Technol. 26, 289–303 (1998).
[CrossRef]

D. Bicanic, M. Franko, J. Gibkes, E. Gerkema, J. P. Favier, H. Jalink, “Applications of photoacoustic and photothermal non-contact methods in selected areas of environmental and agricultural sciences,” in Life and Earth Sciences, Vol. 3 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, P. Hess, eds. (SPIE Press, Bellingham, Wash., 1997), pp. 129–184.

Bobbitt, D. R.

Boccara, A. C.

Bozoki, Z.

G. Močnik, M. Franko, Z. Bozoki, D. Bicanic, H. Jalink, “On the simultaneous effect of beam deflection and thermal lensing phenomena in photothermal spectrometry,” Instrum. Sci. Technol. 26, 289–303 (1998).
[CrossRef]

Erskine, R. S.

Favier, J. P.

D. Bicanic, M. Franko, J. Gibkes, E. Gerkema, J. P. Favier, H. Jalink, “Applications of photoacoustic and photothermal non-contact methods in selected areas of environmental and agricultural sciences,” in Life and Earth Sciences, Vol. 3 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, P. Hess, eds. (SPIE Press, Bellingham, Wash., 1997), pp. 129–184.

Fournier, D.

Franko, M.

G. Močnik, M. Franko, Z. Bozoki, D. Bicanic, H. Jalink, “On the simultaneous effect of beam deflection and thermal lensing phenomena in photothermal spectrometry,” Instrum. Sci. Technol. 26, 289–303 (1998).
[CrossRef]

M. Šikovec, M. Novič, M. Franko, “Application of thermal lens spectrometric detection to the determination of heavy metals by ion chromatography,” J. Chromatogr. A 739, 111–117 (1996).
[CrossRef]

D. Bicanic, M. Franko, J. Gibkes, E. Gerkema, J. P. Favier, H. Jalink, “Applications of photoacoustic and photothermal non-contact methods in selected areas of environmental and agricultural sciences,” in Life and Earth Sciences, Vol. 3 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, P. Hess, eds. (SPIE Press, Bellingham, Wash., 1997), pp. 129–184.

Gerkema, E.

D. Bicanic, M. Franko, J. Gibkes, E. Gerkema, J. P. Favier, H. Jalink, “Applications of photoacoustic and photothermal non-contact methods in selected areas of environmental and agricultural sciences,” in Life and Earth Sciences, Vol. 3 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, P. Hess, eds. (SPIE Press, Bellingham, Wash., 1997), pp. 129–184.

Gibkes, J.

D. Bicanic, M. Franko, J. Gibkes, E. Gerkema, J. P. Favier, H. Jalink, “Applications of photoacoustic and photothermal non-contact methods in selected areas of environmental and agricultural sciences,” in Life and Earth Sciences, Vol. 3 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, P. Hess, eds. (SPIE Press, Bellingham, Wash., 1997), pp. 129–184.

Gupta, R.

Q. He, R. Vyas, R. Gupta, “Photothermal lensing detection: theory and experiment,” Appl. Opt. 36, 7046–7058 (1997).
[CrossRef]

R. Gupta, “Principles of photothermal and photoacoustic phenomena,” in Principles and Perspectives of Photothermal and Photoacoustic Phenomena, Vol. 1 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, ed. (Elsevier, New York, 1992), pp. 96–154.

He, Q.

Jackson, W. B.

Jalink, H.

G. Močnik, M. Franko, Z. Bozoki, D. Bicanic, H. Jalink, “On the simultaneous effect of beam deflection and thermal lensing phenomena in photothermal spectrometry,” Instrum. Sci. Technol. 26, 289–303 (1998).
[CrossRef]

D. Bicanic, M. Franko, J. Gibkes, E. Gerkema, J. P. Favier, H. Jalink, “Applications of photoacoustic and photothermal non-contact methods in selected areas of environmental and agricultural sciences,” in Life and Earth Sciences, Vol. 3 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, P. Hess, eds. (SPIE Press, Bellingham, Wash., 1997), pp. 129–184.

Mocnik, G.

G. Močnik, M. Franko, Z. Bozoki, D. Bicanic, H. Jalink, “On the simultaneous effect of beam deflection and thermal lensing phenomena in photothermal spectrometry,” Instrum. Sci. Technol. 26, 289–303 (1998).
[CrossRef]

Novic, M.

M. Šikovec, M. Novič, M. Franko, “Application of thermal lens spectrometric detection to the determination of heavy metals by ion chromatography,” J. Chromatogr. A 739, 111–117 (1996).
[CrossRef]

Saleh, B. E. A.

See, for example, B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), pp. 80–107.

Šikovec, M.

M. Šikovec, M. Novič, M. Franko, “Application of thermal lens spectrometric detection to the determination of heavy metals by ion chromatography,” J. Chromatogr. A 739, 111–117 (1996).
[CrossRef]

Teich, M. C.

See, for example, B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), pp. 80–107.

Vyas, R.

Appl. Opt. (2)

Appl. Spectrosc. (1)

Instrum. Sci. Technol. (1)

G. Močnik, M. Franko, Z. Bozoki, D. Bicanic, H. Jalink, “On the simultaneous effect of beam deflection and thermal lensing phenomena in photothermal spectrometry,” Instrum. Sci. Technol. 26, 289–303 (1998).
[CrossRef]

J. Chromatogr. A (1)

M. Šikovec, M. Novič, M. Franko, “Application of thermal lens spectrometric detection to the determination of heavy metals by ion chromatography,” J. Chromatogr. A 739, 111–117 (1996).
[CrossRef]

Other (3)

R. Gupta, “Principles of photothermal and photoacoustic phenomena,” in Principles and Perspectives of Photothermal and Photoacoustic Phenomena, Vol. 1 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, ed. (Elsevier, New York, 1992), pp. 96–154.

See, for example, B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, New York, 1991), pp. 80–107.

D. Bicanic, M. Franko, J. Gibkes, E. Gerkema, J. P. Favier, H. Jalink, “Applications of photoacoustic and photothermal non-contact methods in selected areas of environmental and agricultural sciences,” in Life and Earth Sciences, Vol. 3 of Progress in Photothermal and Photoacoustic Sciences and Technology, A. Mandelis, P. Hess, eds. (SPIE Press, Bellingham, Wash., 1997), pp. 129–184.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Beam propagation scheme.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Experimental data (EXP) and theoretical signals for the thermal lens setup for different pump-to-probe beam axis offsets x 0: pure thermal lens (TL), combined thermal lens and beam deflection (TL + BD). Pump beam radius, a = (1.0 ± 0.1) mm; pump beam power, P 0 = 142 mW.

Fig. 4
Fig. 4

Same as in Fig. 3, but for pump beam power P 0 = 670 mW and pump beam radius a = (1.1 ± 0.15) mm.

Fig. 5
Fig. 5

Representative pump beam profile calculated by the differentiation of the knife edge measurements. The fit of the data with a Gaussian gives the e -2 beam radius a = (1.1 ± 0.15 mm).

Fig. 6
Fig. 6

Experimental data (EXP) and theoretical signals for the beam deflection experimental setup for different offsets x 0: pure beam deflection (BD), and combined beam deflection and thermal lens (BD + TL). Pump beam radius, a = (1.0 ± 0.1) mm; pump beam power, P 0 = 142 mW.

Fig. 7
Fig. 7

Same as Fig. 6, but for pump beam power P 0 = 670 mW and pump beam radius a = (1.1 ± 0.15) mm.

Fig. 8
Fig. 8

Experimental data (EXP) and theoretical signals for different sample-to-detector distances z 2 at offset x 0 = 0.5 mm. Theoretical signals were calculated for pure thermal lens (TL) and combined thermal lens and beam deflection (TL + BD) phenomena for the thermal lens experimental setup and for pure beam deflection (BD) and combined beam deflection and thermal lens (BD + TL) phenomena for the beam deflection experimental setup.

Fig. 9
Fig. 9

Experimental data (EXP) and theoretical signals for varying pump beam radius a at the fixed offset x 0 = 0.5 mm and the fixed power density P 0/a 2 ≃ 190 mW/mm2. Theoretical signals were calculated for combined thermal lens and beam deflection (TL + BD) phenomena for the thermal lens experimental setup and for combined beam deflection and thermal lens (BD + TL) phenomena for the beam deflection experimental setup.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

STL+BDt=w20w2t2 exp-2z2ϕtw2t2-1,
STLt=w20w2t2-1,
w22t=w021-z2ft2+1z02z1+z2-z1z2ft2,
SBDt=42πz2ϕtw20
SBD+TLt=42πz2ϕtw2t.

Metrics