Abstract

We present a comprehensive study of the optimum operating regime in gain-switched Cr:forsterite lasers pumped at kilohertz repetition rates, comparing five crystals of similar quality but different dopant levels. The optimization of the cavity design includes selection of the proper pump fluence to account for excited-state absorption, optimum matching of the pump and laser modes, and consideration of thermal effects. As a result >1-W average output power is demonstrated at 2 kHz. The maximum conversion efficiencies achieved at 1 kHz are 24.2% (slope) and 20% (absolute). Narrow-band operation of this laser is possible with a birefringent filter, which is a prerequisite for efficient frequency doubling to cover the 585–660-nm part of the visible spectral range. Tunable second-harmonic generation in a temperature-tuned noncritical scheme that employs LiB3O5 produces 60 mW of average power near 619 nm with 13.5% conversion efficiency.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petricevic, S. K. Gayen, R. R. Alfano, “Near infrared tunable operation of chromium doped forsterite laser,” Appl. Opt. 28, 1609–1611 (1989).
    [CrossRef] [PubMed]
  2. V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
    [CrossRef]
  3. J. M. Evans, V. Petricevic, A. B. Bykov, A. Delgano, R. R. Alfano, “Direct diode-pumped continuous-wave near-infrared tunable laser operation of Cr4+:forsterite and Cr4+:Ca2GeO4,” Opt. Lett. 22, 1171–1173 (1997).
    [CrossRef] [PubMed]
  4. X. Liu, L. Qian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa, K. Torizuka, “Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber,” Opt. Lett. 23, 129–131 (1998).
    [CrossRef]
  5. I. T. McKinnie, A. L. Oien, “Tunable red–yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
    [CrossRef]
  6. A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr4+:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
    [CrossRef]
  7. A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997) [translated from Kvant. Elektron. (Moscow) 24, 134–136 (1997)];“Characteristics and kinetics of lasing with gain modulation in a chromium-doped forsterite crystal,” Opt. Spectrosc. 83, 451–456 (1997) [translated from Opt. Spektrosk. 83, 483–488 (1997)].
  8. T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
    [CrossRef]
  9. N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
    [CrossRef]
  10. V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
    [CrossRef]
  11. M. G. Livshits, Y. I. Mishkel, A. A. Tarasov, “Quasi-cw lasing in Mg2SiO4:Cr4+ single crystals,” Sov. J. Quantum Electron. 22, 454–455 (1992) [translated from Kvant. Elektron. (Moscow) 19, 496–498 (1992)].
  12. C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
    [CrossRef]
  13. H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–39.
  14. N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, V. P. Mikhailov, “Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,” Opt. Lett. 23, 1028–1030 (1998).
    [CrossRef]
  15. S. T. Lai, “Review of spectroscopic and laser properties of emerald,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE622, 146–150 (1986).
    [CrossRef]
  16. A. Sennaroglu, B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998);A. Sennaroglu, “Efficient continuous-wave radiatively cooled Cr4+:forsterite lasers at room temperature,” Appl. Opt. 37, 1062–1067 (1998).
    [CrossRef]
  17. T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr4+-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
    [CrossRef]
  18. I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
    [CrossRef] [PubMed]
  19. N. Zhavoronkov, A. Avtukh, V. Mikhailov, “Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature,” Appl. Opt. 36, 8601–8605 (1997).
    [CrossRef]
  20. V. Shcheslavskiy, F. Noack, V. Petrov, N. Zhavoronkov, “Femtosecond regenerative amplification in Cr:forsterite,” Appl. Opt. 38, 3294–3297 (1999).
    [CrossRef]
  21. I. T. Mckinnie, L. A. W. Gloster, A. M. Ouien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
    [CrossRef]
  22. X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
    [CrossRef]
  23. K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
    [CrossRef]
  24. T. Ukachi, R. J. Lane, W. R. Bosenberg, C. L. Tang, “Measurement of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
    [CrossRef]

1999

1998

1997

I. T. McKinnie, A. L. Oien, “Tunable red–yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997) [translated from Kvant. Elektron. (Moscow) 24, 134–136 (1997)];“Characteristics and kinetics of lasing with gain modulation in a chromium-doped forsterite crystal,” Opt. Spectrosc. 83, 451–456 (1997) [translated from Opt. Spektrosk. 83, 483–488 (1997)].

J. M. Evans, V. Petricevic, A. B. Bykov, A. Delgano, R. R. Alfano, “Direct diode-pumped continuous-wave near-infrared tunable laser operation of Cr4+:forsterite and Cr4+:Ca2GeO4,” Opt. Lett. 22, 1171–1173 (1997).
[CrossRef] [PubMed]

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

N. Zhavoronkov, A. Avtukh, V. Mikhailov, “Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature,” Appl. Opt. 36, 8601–8605 (1997).
[CrossRef]

1996

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr4+:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr4+-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

I. T. Mckinnie, L. A. W. Gloster, A. M. Ouien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

1995

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

1994

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[CrossRef]

1993

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

1990

V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
[CrossRef]

T. Ukachi, R. J. Lane, W. R. Bosenberg, C. L. Tang, “Measurement of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

1989

Agnesi, A.

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr4+:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

Alfano, R. R.

Avtukh, A.

Avtukh, A. S.

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997) [translated from Kvant. Elektron. (Moscow) 24, 134–136 (1997)];“Characteristics and kinetics of lasing with gain modulation in a chromium-doped forsterite crystal,” Opt. Spectrosc. 83, 451–456 (1997) [translated from Opt. Spektrosk. 83, 483–488 (1997)].

Barber, D. B.

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

Baryshevskii, V. G.

V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
[CrossRef]

Bosenberg, W. R.

T. Ukachi, R. J. Lane, W. R. Bosenberg, C. L. Tang, “Measurement of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Bykov, A. B.

Carrig, T. J.

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

Danger, T.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

Delgano, A.

Dell’Acqua, S.

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr4+:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

Evans, J. M.

Fujii, T.

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr4+-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

Gayen, S. K.

Gloster, L. A. W.

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

I. T. Mckinnie, L. A. W. Gloster, A. M. Ouien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

Gobbi, P. G.

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr4+:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

Harting, S.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

Huber, G.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

Itatani, T.

V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
[CrossRef]

X. Liu, L. Qian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa, K. Torizuka, “Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber,” Opt. Lett. 23, 129–131 (1998).
[CrossRef]

Jiang, Z. X.

Kato, K.

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[CrossRef]

Kimaev, A. E.

V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
[CrossRef]

King, T. A.

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

I. T. Mckinnie, L. A. W. Gloster, A. M. Ouien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

Korzhik, M. V.

V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
[CrossRef]

Kück, S.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

Kuleshov, N. V.

N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, V. P. Mikhailov, “Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,” Opt. Lett. 23, 1028–1030 (1998).
[CrossRef]

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

Lagatsky, A. A.

Lai, S. T.

S. T. Lai, “Review of spectroscopic and laser properties of emerald,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE622, 146–150 (1986).
[CrossRef]

Lane, R. J.

T. Ukachi, R. J. Lane, W. R. Bosenberg, C. L. Tang, “Measurement of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Liu, X.

X. Liu, L. Qian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa, K. Torizuka, “Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber,” Opt. Lett. 23, 129–131 (1998).
[CrossRef]

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

Livshits, M. G.

M. G. Livshits, Y. I. Mishkel, A. A. Tarasov, “Quasi-cw lasing in Mg2SiO4:Cr4+ single crystals,” Sov. J. Quantum Electron. 22, 454–455 (1992) [translated from Kvant. Elektron. (Moscow) 19, 496–498 (1992)].

Livshitz, M. G.

V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
[CrossRef]

Markgraf, S.

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

Mass, J. L.

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

McKinnie, I. T.

I. T. McKinnie, A. L. Oien, “Tunable red–yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

I. T. McKinnie, L. A. W. Gloster, Z. X. Jiang, T. A. King, “Chromium-doped forsterite: the influence of crystal characteristics on laser performance,” Appl. Opt. 35, 4159–4165 (1996).
[CrossRef] [PubMed]

I. T. Mckinnie, L. A. W. Gloster, A. M. Ouien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

Meilman, M. L.

V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
[CrossRef]

Merkle, L.

H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–39.

Mikhailov, V.

Mikhailov, V. P.

N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, V. P. Mikhailov, “Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,” Opt. Lett. 23, 1028–1030 (1998).
[CrossRef]

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997) [translated from Kvant. Elektron. (Moscow) 24, 134–136 (1997)];“Characteristics and kinetics of lasing with gain modulation in a chromium-doped forsterite crystal,” Opt. Spectrosc. 83, 451–456 (1997) [translated from Opt. Spektrosk. 83, 483–488 (1997)].

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

Minkov, B. I.

V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
[CrossRef]

Mirtchev, T.

V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
[CrossRef]

Mishkel, Y. I.

M. G. Livshits, Y. I. Mishkel, A. A. Tarasov, “Quasi-cw lasing in Mg2SiO4:Cr4+ single crystals,” Sov. J. Quantum Electron. 22, 454–455 (1992) [translated from Kvant. Elektron. (Moscow) 19, 496–498 (1992)].

Nagano, M.

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr4+-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

Nakagawa, T.

V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
[CrossRef]

X. Liu, L. Qian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa, K. Torizuka, “Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber,” Opt. Lett. 23, 129–131 (1998).
[CrossRef]

Nemoto, K.

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr4+-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

Noack, F.

V. Shcheslavskiy, F. Noack, V. Petrov, N. Zhavoronkov, “Femtosecond regenerative amplification in Cr:forsterite,” Appl. Opt. 38, 3294–3297 (1999).
[CrossRef]

V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
[CrossRef]

Oien, A. L.

I. T. McKinnie, A. L. Oien, “Tunable red–yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

Ouien, A. M.

I. T. Mckinnie, L. A. W. Gloster, A. M. Ouien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

Pavlenko, V. B.

V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
[CrossRef]

Pekerten, B.

Petermann, K.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

Petricevic, V.

Petrov, V.

V. Shcheslavskiy, F. Noack, V. Petrov, N. Zhavoronkov, “Femtosecond regenerative amplification in Cr:forsterite,” Appl. Opt. 38, 3294–3297 (1999).
[CrossRef]

V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
[CrossRef]

Podlipensky, A. V.

Pollock, C. R.

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

Qian, L.

X. Liu, L. Qian, F. Wise, Z. Zhang, T. Itatani, T. Sugaya, T. Nakagawa, K. Torizuka, “Femtosecond Cr:forsterite laser diode pumped by a double-clad fiber,” Opt. Lett. 23, 129–131 (1998).
[CrossRef]

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

Segaya, T.

V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
[CrossRef]

Sennaroglu, A.

Shcherbitsky, V. G.

N. V. Kuleshov, A. V. Podlipensky, V. G. Shcherbitsky, A. A. Lagatsky, V. P. Mikhailov, “Excited-state absorption in the range of pumping and laser efficiency of Cr4+:forsterite,” Opt. Lett. 23, 1028–1030 (1998).
[CrossRef]

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

Shcheslavskiy, V.

V. Shcheslavskiy, F. Noack, V. Petrov, N. Zhavoronkov, “Femtosecond regenerative amplification in Cr:forsterite,” Appl. Opt. 38, 3294–3297 (1999).
[CrossRef]

V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
[CrossRef]

Sugaya, T.

Tang, C. L.

T. Ukachi, R. J. Lane, W. R. Bosenberg, C. L. Tang, “Measurement of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Tarasov, A. A.

M. G. Livshits, Y. I. Mishkel, A. A. Tarasov, “Quasi-cw lasing in Mg2SiO4:Cr4+ single crystals,” Sov. J. Quantum Electron. 22, 454–455 (1992) [translated from Kvant. Elektron. (Moscow) 19, 496–498 (1992)].

Torizuka, K.

Ukachi, T.

T. Ukachi, R. J. Lane, W. R. Bosenberg, C. L. Tang, “Measurement of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Verdun, H. R.

H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–39.

Wise, F.

Wise, F. W.

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

Zhang, Z.

Zhavoronkov, N.

Zhavoronkov, N. I.

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997) [translated from Kvant. Elektron. (Moscow) 24, 134–136 (1997)];“Characteristics and kinetics of lasing with gain modulation in a chromium-doped forsterite crystal,” Opt. Spectrosc. 83, 451–456 (1997) [translated from Opt. Spektrosk. 83, 483–488 (1997)].

Appl. Opt.

Appl. Phys. Lett.

T. Ukachi, R. J. Lane, W. R. Bosenberg, C. L. Tang, “Measurement of noncritically phase-matched second-harmonic generation in a LiB3O5 crystal,” Appl. Phys. Lett. 57, 980–982 (1990).
[CrossRef]

Electron. Lett.

V. Petrov, V. Shcheslavskiy, T. Mirtchev, F. Noack, T. Itatani, T. Segaya, T. Nakagawa, “High-power self-starting femtosecond Cr-forsterite laser,” Electron. Lett. 34, 559–561 (1998).
[CrossRef]

IEEE J. Quantum Electron.

T. Fujii, M. Nagano, K. Nemoto, “Spectroscopic and laser oscillation characteristics of highly Cr4+-doped forsterite,” IEEE J. Quantum Electron. 32, 1497–1503 (1996).
[CrossRef]

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

K. Kato, “Temperature-tuned 90° phase-matching properties of LiB3O5,” IEEE J. Quantum Electron. 30, 2950–2952 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. R. Pollock, D. B. Barber, J. L. Mass, S. Markgraf, “Cr4+ lasers: present performance and prospects for new host lattices,” IEEE J. Sel. Top. Quantum Electron. 1, 62–66 (1995).
[CrossRef]

J. Appl. Spectrosc.

V. G. Baryshevskii, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Meilman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. 53, 675–676 (1990) [translated from Zh. Prikl. Spektrosk. 53, 7–9 (1990)].
[CrossRef]

J. Lumin.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Harting, T. Danger, S. Kück, K. Petermann, G. Huber, “Excited state absorption and stimulated emission measurements in Cr4+:forsterite,” J. Lumin. 75, 319–325 (1997).
[CrossRef]

Opt. Commun.

I. T. McKinnie, A. L. Oien, “Tunable red–yellow laser based on second harmonic generation of Cr:forsterite in KTP,” Opt. Commun. 141, 157–161 (1997).
[CrossRef]

A. Agnesi, S. Dell’Acqua, P. G. Gobbi, “All-solid-state gain-switched Cr4+:forsterite laser,” Opt. Commun. 127, 273–276 (1996).
[CrossRef]

I. T. Mckinnie, L. A. W. Gloster, A. M. Ouien, T. A. King, “The role of active ion concentration in tuned chromium forsterite oscillators,” Opt. Commun. 129, 49–56 (1996).
[CrossRef]

X. Liu, L. Qian, F. W. Wise, “Efficient generation of 50-fs red pulses by frequency doubling in LiB3O5,” Opt. Commun. 144, 265–268 (1997).
[CrossRef]

Opt. Lett.

Quantum Electron.

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997) [translated from Kvant. Elektron. (Moscow) 24, 134–136 (1997)];“Characteristics and kinetics of lasing with gain modulation in a chromium-doped forsterite crystal,” Opt. Spectrosc. 83, 451–456 (1997) [translated from Opt. Spektrosk. 83, 483–488 (1997)].

Sov. J. Quantum Electron.

M. G. Livshits, Y. I. Mishkel, A. A. Tarasov, “Quasi-cw lasing in Mg2SiO4:Cr4+ single crystals,” Sov. J. Quantum Electron. 22, 454–455 (1992) [translated from Kvant. Elektron. (Moscow) 19, 496–498 (1992)].

Other

H. R. Verdun, L. Merkle, “Evidence of excited-state absorption of pump radiation in the Cr:forsterite laser,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 35–39.

S. T. Lai, “Review of spectroscopic and laser properties of emerald,” in High Power and Solid State Lasers, W. W. Simmons, ed., Proc. SPIE622, 146–150 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Measured exponential loss coefficient at 1235 nm inCr:forsterite as a function of temperature (squares). A Brewster-cut sample 35 mm long (along the a axis) with a small signal absorption coefficient α(1064 nm) = 1.063 cm-1 (Eb) was used in this case. The lower curve is a result of calculation (see text).

Fig. 2
Fig. 2

Cavity mode waist radius (w 10) between the curved mirrors M1 and M2 versus distance between these mirrors calculated in the sagittal plane. Dashed lines, two configurations used in Figs. 3 and 5 below.

Fig. 3
Fig. 3

Cavity mode distribution for two separations (34 and 38 cm) between the curved mirrors M1 and M2 as indicated in Fig. 2. The distance from the folding mirror M2 to the output mirror M3 is fixed at 52 cm.

Fig. 4
Fig. 4

Calculated pump efficiency (η e ) reduction caused by excited-state absorption of the pump radiation as a function of the pump fluence for crystal 3 (Table 1).

Fig. 5
Fig. 5

Calculated pump mode and cavity mode distribution between the two curved mirrors M1 and M2 for two separations between these mirrors and two values of the distance between the focusing lens (L) and the folding mirror M2.

Fig. 6
Fig. 6

Output power versus absorbed pump power for the five studied Cr:forsterite crystals at a 1-kHz repetition rate and different output mirrors: 15.3% (squares), 10.1% (circles), 7.1% (up triangles) and 3.35% (down triangles). The absorption coefficient α(1064 nm) amounts to (a) 1.06 cm-1, (b) 1.15 cm-1, (c) 1.43 cm-1, (d) 1.52 cm-1, and (e) 1.8 cm-1. The maximum slope efficiency included in Table 1 is obtained from a linear fit to the experimental points in this figure with the 15% output coupler.

Fig. 7
Fig. 7

Average output power of the gain-switched Cr:forsterite laser with the 1.43-cm-1 crystal (squares) versus repetition rate. The 15% output coupler is used in this case. For comparison the absorbed power (divided by 10) is also shown (circles).

Fig. 8
Fig. 8

Output mirror transmission [-ln(R 3)] plotted against the measured threshold pump power for the 1.43-cm-1 crystal at a 1-kHz repetition rate. The linear fit is used for estimation of the round-trip cavity loss.

Fig. 9
Fig. 9

Output pulse duration (squares) and build-up time (circles) versus absorbed pump power for the 1.43-cm-1 crystal. This dependence was measured with the 15% output coupler at a 1-kHz repetition rate. Values (multiplied by 10) of the pulse duration above 1 W of absorbed power are shown by open squares.

Fig. 10
Fig. 10

Tunability achieved with the 1.43-cm-1 Cr:forsterite crystal with an intracavity dispersive prism and the 15% output coupler. The repetition rate is 1 kHz, and the absorbed pump power is 3.16 W.

Fig. 11
Fig. 11

Typical spectra of the gain-switched Cr:forsterite laser recorded (a) without any tuning element, (b) with an intracavity prism, and (c) with a birefringent filter. The crystal with α(1064 nm) = 1.43 cm-1 was used in this case, the repetition rate was 1 kHz, and the output coupler had 15% transmission.

Fig. 12
Fig. 12

Tunability achieved with the 1.43-cm-1 Cr:forsterite crystal with a birefringent filter in the resonator and the 15% output coupler. The repetition rate is 1 kHz, and the absorbed pump power is 3.16 W.

Fig. 13
Fig. 13

Output power at the second harmonic as a function of wavelength. Parameters at the fundamental are as in Fig. 12.

Fig. 14
Fig. 14

Temperature for achieving NCPM in LBO as a function of fundamental wavelength: squares (experiment), curve (calculation).

Fig. 15
Fig. 15

Pulse duration of the second-harmonic pulse as a function of wavelength. Parameters at the fundamental are as in Fig. 12.

Tables (1)

Tables Icon

Table 1 Cr:Forsterite Crystal Characteristicsa

Metrics