Abstract

The temperature dependence of the beat frequency and polarization azimuth of fiber-guiding laser diode pumped Nd3+:YAG microchip lasers emitting orthogonal linear polarization at two frequencies is investigated, and we found a resemblance to the features that result from the application of mechanical force. The experimental observations are well described by the cavity model, which indicates that temperature change induces weak phase anisotropy in addition to the original phase anisotropy with general mutually inclined axes of anisotropy. With a servo control to keep the beat frequency constant, the beat and central laser frequencies are simultaneously stabilized to within ±0.1 MHz and ±0.35 GHz, respectively.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Czarske, H. Meuller, “Heterodyne interferometer using a novel two-frequency Nd:YAG laser,” Electron. Lett. 30, 970–971 (1994).
    [CrossRef]
  2. J. W. Czarske, H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
    [CrossRef]
  3. T. Yoshino, M. Kawata, B. Qimude, “Fiber-coupling-operated orthogonal-linear-polarization Nd:YAG microchip laser: photothermal beat-frequency stabilization and interferometric displacement measurement application,” J. Lightwave Technol. 16, 453–458 (1998).
    [CrossRef]
  4. A. Owyoung, P. Esherich, “Stress-induced tuning of a laser-diode-excited monolithic Nd:YAG laser,” Opt. Lett. 12, 999–1011 (1987).
    [CrossRef] [PubMed]
  5. W. Holzapfel, N. Finnenmann, “High-resolution force sensing by a diode pumped Nd:YAG laser,” Opt. Lett. 18, 2062–2064 (1993).
    [CrossRef]
  6. W. Koechner, ed., Solid-State Laser Engineering, 2nd ed., Vol. 1 of Springer Series on Optical Sciences, (Springer-Verlag, New York, 1988), pp. 49–51.
  7. T. Yoshino, “Polarization properties of internal mirror HeNe lasers at 6328A,” Jpn. J. Appl. Phys. 11, 263–265 (1972).
    [CrossRef]
  8. T. Yoshino, “Reflection anisotropy of 6328A laser mirrors,” Jpn. J. Appl. Phys. 18, 1503–1507 (1979).
    [CrossRef]

1998 (1)

1995 (1)

J. W. Czarske, H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[CrossRef]

1994 (1)

J. Czarske, H. Meuller, “Heterodyne interferometer using a novel two-frequency Nd:YAG laser,” Electron. Lett. 30, 970–971 (1994).
[CrossRef]

1993 (1)

1987 (1)

1979 (1)

T. Yoshino, “Reflection anisotropy of 6328A laser mirrors,” Jpn. J. Appl. Phys. 18, 1503–1507 (1979).
[CrossRef]

1972 (1)

T. Yoshino, “Polarization properties of internal mirror HeNe lasers at 6328A,” Jpn. J. Appl. Phys. 11, 263–265 (1972).
[CrossRef]

Czarske, J.

J. Czarske, H. Meuller, “Heterodyne interferometer using a novel two-frequency Nd:YAG laser,” Electron. Lett. 30, 970–971 (1994).
[CrossRef]

Czarske, J. W.

J. W. Czarske, H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[CrossRef]

Esherich, P.

Finnenmann, N.

Holzapfel, W.

Kawata, M.

Meuller, H.

J. Czarske, H. Meuller, “Heterodyne interferometer using a novel two-frequency Nd:YAG laser,” Electron. Lett. 30, 970–971 (1994).
[CrossRef]

Mueller, H.

J. W. Czarske, H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[CrossRef]

Owyoung, A.

Qimude, B.

Yoshino, T.

T. Yoshino, M. Kawata, B. Qimude, “Fiber-coupling-operated orthogonal-linear-polarization Nd:YAG microchip laser: photothermal beat-frequency stabilization and interferometric displacement measurement application,” J. Lightwave Technol. 16, 453–458 (1998).
[CrossRef]

T. Yoshino, “Reflection anisotropy of 6328A laser mirrors,” Jpn. J. Appl. Phys. 18, 1503–1507 (1979).
[CrossRef]

T. Yoshino, “Polarization properties of internal mirror HeNe lasers at 6328A,” Jpn. J. Appl. Phys. 11, 263–265 (1972).
[CrossRef]

Electron. Lett. (1)

J. Czarske, H. Meuller, “Heterodyne interferometer using a novel two-frequency Nd:YAG laser,” Electron. Lett. 30, 970–971 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (2)

T. Yoshino, “Polarization properties of internal mirror HeNe lasers at 6328A,” Jpn. J. Appl. Phys. 11, 263–265 (1972).
[CrossRef]

T. Yoshino, “Reflection anisotropy of 6328A laser mirrors,” Jpn. J. Appl. Phys. 18, 1503–1507 (1979).
[CrossRef]

Opt. Commun. (1)

J. W. Czarske, H. Mueller, “Birefringent Nd:YAG microchip laser used in heterodyne vibrometry,” Opt. Commun. 114, 223–229 (1995).
[CrossRef]

Opt. Lett. (2)

Other (1)

W. Koechner, ed., Solid-State Laser Engineering, 2nd ed., Vol. 1 of Springer Series on Optical Sciences, (Springer-Verlag, New York, 1988), pp. 49–51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of a Nd3+:YAG microchip laser.

Fig. 2
Fig. 2

Beat frequency and polarization azimuth of a Nd3+:YAG microchip laser measured as a function of chip temperature at three different lasing positions on the chip surface: (a) x = 11 mm, y = 4 mm; (b) x = 4.9 mm, y = 2.6 mm; (c) x = 9 mm, y = 7 mm.

Fig. 3
Fig. 3

Beat frequency and polarization azimuth of a Nd3+:YAG microchip laser measured as a function of applied force at three different lasing positions on the chip surface: (a) x = 9 mm, y = 5 mm; (b) x = 10 mm, y = 9 mm; (c) x = 6 mm, y = 5 mm.

Fig. 4
Fig. 4

Calculation of the (a) beat frequency f b (relative value) and (b) polarization azimuth θ+, in the laser cavity that contains two weak phase anisotropies as a function of anisotropy ratio for mutual inclination angles α of the anisotropy axes.

Fig. 5
Fig. 5

Laser frequency decrease of a Nd3+:YAG microchip laser measured as a function of chip temperature change.

Fig. 6
Fig. 6

Changes in beat frequency f b and temperature T in an orthogonal polarization two-frequency Nd:YAG microchip laser when feedback control is on and when it is off.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

MExEy=λExEy,
M=expiϕe/200exp-iϕe/2cos α-sin αsin αcos α×expiϕ0/200exp-iϕ0/2cos αsin α-sin αcos α,
Ex/Ey±=-k-cos 2α±k2+2k cos 2α+11/2/sin 2α,
λ±=1±iϕe-ϕo2+ϕo2sin2 2α1/2/2i=-1
k=ϕe/ϕo,
θ±=tan-1Ex/Ey±θ+-θ-=90°,
fb=Ωargλ+-argλ-/2π, =|ϕo|Ω/2πk2+2k cos 2α+11/2,
Ω=c/2nL

Metrics