Abstract

A practical in situ method is described and used for determination of the fractional thermal-loading parameter ηh in an operating diode-pumped Nd:YVO4 minilaser at 1064 nm. Readily applicable to the thermal characterization of other solid-state media, the method is based on the fact that thermally induced lensing will cause the laser oscillation to be quenched at a critical pump power whose magnitude depends on the cavity configuration, thermo-optical properties of the gain medium, and, in particular, on the value of ηh. In the experiments described here, a 0.5-mm-long coated Nd:YVO4 crystal with 3-at. % Nd concentration was used to construct the diode-pumped laser with a flat highly reflecting end mirror and an intracavity lens. For the method to be effective, the resonator was set up close to the edge of the stability range. Above the oscillation threshold, the pump power at which lasing was quenched because of the onset of the thermally induced resonator instability was measured as a function of the intracavity lens position. A numerical model that accounted for absorption saturation and pump-induced thermal lensing was then used to analyze the experimentally measured data with ηh as an adjustable parameter. The average best-fit value of ηh was determined to be 0.40 with an estimated statistical variation of 8%.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sennaroglu, B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998).
    [CrossRef]
  2. A. Sennaroglu, C. R. Pollock, H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
    [CrossRef]
  3. J. E. Marion, “Fracture of solid state laser slabs,” J. Appl. Phys. 60, 69–77 (1986).
    [CrossRef]
  4. D. Metcalf, P. de Giovanni, J. Zachorowski, M. Leduc, “Laser resonators containing self-focusing elements,” Appl. Opt. 26, 4508–4517 (1987).
    [CrossRef] [PubMed]
  5. S. de Silvestri, P. Laporta, V. Magni, “Pump power stability range of single-mode solid-state lasers with rod thermal lensing,” IEEE J. Quantum Electron. QE-23, 1999–2003 (1987).
    [CrossRef]
  6. M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
    [CrossRef]
  7. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
    [CrossRef]
  8. B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
    [CrossRef]
  9. B. Comaskey, B. D. Moran, G. F. Albrecht, R. J. Beach, “Characterization of the heat loading of Nd-doped YAG, YOS, YLF, and GGG excited at diode pumping wavelengths,” IEEE J. Quantum Electron. 31, 1261–1264 (1995).
    [CrossRef]
  10. A. Sennaroglu, “Continuous-wave thermal loading in saturable absorbers: theory and experiment,” Appl. Opt. 36, 9528–9535 (1997).
    [CrossRef]
  11. D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–571 (1998).
    [CrossRef]
  12. J. M. Eichenholtz, M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
    [CrossRef]
  13. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
    [CrossRef]
  14. T. S. Chen, V. L. Anderson, O. Kahan, “Measurement of heating and energy storage in diode-pumped Nd:YAG,” IEEE J. Quantum Electron. 26, 6–8 (1990).
    [CrossRef]
  15. A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
    [CrossRef]
  16. Y-F Chen, H-J Kuo, “Determination of the thermal loading of diode-pumped Nd:YVO4 by use of thermally induced second-harmonic output depolarization,” Opt. Lett. 23, 846–848 (1998).
    [CrossRef]
  17. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 2.
  18. H. Song, Casix, Inc., P.O. Box 1103 Fuzhou, Fujian 350014, China (personal communication, 21December1998).

1998 (4)

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–571 (1998).
[CrossRef]

J. M. Eichenholtz, M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

A. Sennaroglu, B. Pekerten, “Determination of the optimum absorption coefficient in Cr4+:forsterite lasers under thermal loading,” Opt. Lett. 23, 361–363 (1998).
[CrossRef]

Y-F Chen, H-J Kuo, “Determination of the thermal loading of diode-pumped Nd:YVO4 by use of thermally induced second-harmonic output depolarization,” Opt. Lett. 23, 846–848 (1998).
[CrossRef]

1997 (1)

1996 (1)

A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

1995 (3)

A. Sennaroglu, C. R. Pollock, H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
[CrossRef]

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
[CrossRef]

B. Comaskey, B. D. Moran, G. F. Albrecht, R. J. Beach, “Characterization of the heat loading of Nd-doped YAG, YOS, YLF, and GGG excited at diode pumping wavelengths,” IEEE J. Quantum Electron. 31, 1261–1264 (1995).
[CrossRef]

1993 (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

1992 (1)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

1990 (2)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

T. S. Chen, V. L. Anderson, O. Kahan, “Measurement of heating and energy storage in diode-pumped Nd:YAG,” IEEE J. Quantum Electron. 26, 6–8 (1990).
[CrossRef]

1987 (2)

S. de Silvestri, P. Laporta, V. Magni, “Pump power stability range of single-mode solid-state lasers with rod thermal lensing,” IEEE J. Quantum Electron. QE-23, 1999–2003 (1987).
[CrossRef]

D. Metcalf, P. de Giovanni, J. Zachorowski, M. Leduc, “Laser resonators containing self-focusing elements,” Appl. Opt. 26, 4508–4517 (1987).
[CrossRef] [PubMed]

1986 (1)

J. E. Marion, “Fracture of solid state laser slabs,” J. Appl. Phys. 60, 69–77 (1986).
[CrossRef]

Albrecht, G. F.

B. Comaskey, B. D. Moran, G. F. Albrecht, R. J. Beach, “Characterization of the heat loading of Nd-doped YAG, YOS, YLF, and GGG excited at diode pumping wavelengths,” IEEE J. Quantum Electron. 31, 1261–1264 (1995).
[CrossRef]

Anderson, V. L.

T. S. Chen, V. L. Anderson, O. Kahan, “Measurement of heating and energy storage in diode-pumped Nd:YAG,” IEEE J. Quantum Electron. 26, 6–8 (1990).
[CrossRef]

Beach, R. J.

B. Comaskey, B. D. Moran, G. F. Albrecht, R. J. Beach, “Characterization of the heat loading of Nd-doped YAG, YOS, YLF, and GGG excited at diode pumping wavelengths,” IEEE J. Quantum Electron. 31, 1261–1264 (1995).
[CrossRef]

Brown, D. C.

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–571 (1998).
[CrossRef]

Chen, T. S.

T. S. Chen, V. L. Anderson, O. Kahan, “Measurement of heating and energy storage in diode-pumped Nd:YAG,” IEEE J. Quantum Electron. 26, 6–8 (1990).
[CrossRef]

Chen, Y-F

Comaskey, B.

B. Comaskey, B. D. Moran, G. F. Albrecht, R. J. Beach, “Characterization of the heat loading of Nd-doped YAG, YOS, YLF, and GGG excited at diode pumping wavelengths,” IEEE J. Quantum Electron. 31, 1261–1264 (1995).
[CrossRef]

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

de Giovanni, P.

de Silvestri, S.

S. de Silvestri, P. Laporta, V. Magni, “Pump power stability range of single-mode solid-state lasers with rod thermal lensing,” IEEE J. Quantum Electron. QE-23, 1999–2003 (1987).
[CrossRef]

Eichenholtz, J. M.

J. M. Eichenholtz, M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Kahan, O.

T. S. Chen, V. L. Anderson, O. Kahan, “Measurement of heating and energy storage in diode-pumped Nd:YAG,” IEEE J. Quantum Electron. 26, 6–8 (1990).
[CrossRef]

Kuo, H-J

Laporta, P.

S. de Silvestri, P. Laporta, V. Magni, “Pump power stability range of single-mode solid-state lasers with rod thermal lensing,” IEEE J. Quantum Electron. QE-23, 1999–2003 (1987).
[CrossRef]

Leduc, M.

Magni, V.

S. de Silvestri, P. Laporta, V. Magni, “Pump power stability range of single-mode solid-state lasers with rod thermal lensing,” IEEE J. Quantum Electron. QE-23, 1999–2003 (1987).
[CrossRef]

Marion, J. E.

J. E. Marion, “Fracture of solid state laser slabs,” J. Appl. Phys. 60, 69–77 (1986).
[CrossRef]

McInnes, A.

A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

Metcalf, D.

Moran, B. D.

B. Comaskey, B. D. Moran, G. F. Albrecht, R. J. Beach, “Characterization of the heat loading of Nd-doped YAG, YOS, YLF, and GGG excited at diode pumping wavelengths,” IEEE J. Quantum Electron. 31, 1261–1264 (1995).
[CrossRef]

Nathel, H.

Neuenschwander, B.

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
[CrossRef]

Pekerten, B.

Pollock, C. R.

Richards, J.

A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

Richardson, M.

J. M. Eichenholtz, M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

Sennaroglu, A.

Song, H.

H. Song, Casix, Inc., P.O. Box 1103 Fuzhou, Fujian 350014, China (personal communication, 21December1998).

Weber, H. P.

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
[CrossRef]

Weber, R.

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 2.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 2.

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Zachorowski, J.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

IEEE J. Quantum Electron. (9)

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

B. Neuenschwander, R. Weber, H. P. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron. 31, 1082–1087 (1995).
[CrossRef]

B. Comaskey, B. D. Moran, G. F. Albrecht, R. J. Beach, “Characterization of the heat loading of Nd-doped YAG, YOS, YLF, and GGG excited at diode pumping wavelengths,” IEEE J. Quantum Electron. 31, 1261–1264 (1995).
[CrossRef]

D. C. Brown, “Heat, fluorescence, and stimulated-emission power densities and fractions in Nd:YAG,” IEEE J. Quantum Electron. 34, 560–571 (1998).
[CrossRef]

J. M. Eichenholtz, M. Richardson, “Measurement of thermal lensing in Cr3+-doped colquiriites,” IEEE J. Quantum Electron. 34, 910–919 (1998).
[CrossRef]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

T. S. Chen, V. L. Anderson, O. Kahan, “Measurement of heating and energy storage in diode-pumped Nd:YAG,” IEEE J. Quantum Electron. 26, 6–8 (1990).
[CrossRef]

A. McInnes, J. Richards, “Thermal effects in a coplanar-pumped folded-zigzag slab laser,” IEEE J. Quantum Electron. 32, 1243–1252 (1996).
[CrossRef]

S. de Silvestri, P. Laporta, V. Magni, “Pump power stability range of single-mode solid-state lasers with rod thermal lensing,” IEEE J. Quantum Electron. QE-23, 1999–2003 (1987).
[CrossRef]

J. Appl. Phys. (1)

J. E. Marion, “Fracture of solid state laser slabs,” J. Appl. Phys. 60, 69–77 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (2)

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 2.

H. Song, Casix, Inc., P.O. Box 1103 Fuzhou, Fujian 350014, China (personal communication, 21December1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup used in the determination of the fractional thermal loading parameter η h . The notation is defined in the text.

Fig. 2
Fig. 2

Experimentally measured variation of the intracavity laser power as a function of the incident pump power for a total cavity length of 16 cm and for different locations of the intracavity lens.

Fig. 3
Fig. 3

Experimentally measured and theoretically calculated variations of the quenching pump power P q as a function of the distance d2 between the intracavity lens and the gain crystal for three different cavity lengths.

Fig. 4
Fig. 4

Calculated variation of the resonator spot size at the input face of the gain medium as a function of d2 for the three cavity lengths where the quenching data were taken.

Tables (1)

Tables Icon

Table 1 Names and Values of the Parameters that Characterize the Optical and the Thermal Properties of the Nd:YVO4 Laser

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Tr, z=T1z-T2zr2+Or4.
nr=n01-β2r22.
β=2nTn0L00L0dzT2z1/2,
Mcrystal=cosβL01βsinβL0-β sinβL0cosβL0.
T2z=h0, z4κ,
hr, z=ηhαp0Ipr, z1+Ipr, zIs.
Is=hνpσaτf.

Metrics