Abstract

To establish optical communication between any two satellites, the lines of sight of their optics must be aligned for the duration of the communication. The satellite pointing and tracking systems perform the alignment. The satellite pointing systems vibrate because of tracking noise and mechanical impacts (such as thruster operation, the antenna pointing mechanism, the solar array driver, navigation noise, tracking noise). These vibrations increase the bit error rate (BER) of the communication system. An expression is derived for adaptive transmitter power that compensates for vibration effects in heterodyne laser satellite links. This compensation makes it possible to keep the link BER performance constant for changes in vibration amplitudes. The motivation for constant BER is derived from the requirement for future satellite communication networks with high quality of service. A practical situation of a two-low-Earth-orbit satellite communication link is given. From the results of the example it is seen that the required power for a given BER increases almost exponentially for linear increase in vibration amplitude.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Motorola Global Communications Inc., “Application for Celestri multimedia LEO system” (Federal Communications Commission, Washington, D.C., 1997).
  2. S. Arnon, N. S. Kopeika, “Laser satellite communication networks—vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
    [CrossRef]
  3. S. Arnon, N. S. Kopeika, “Performance limitations of free-space optical communication satellite network owing to vibrations: heterodyne detection,” Appl. Opt. 37, 6366–6374 (1998).
    [CrossRef]
  4. S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, Mass., 1995).
  5. S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations—analog case,” Opt. Eng. 36, 175–182 (1997).
    [CrossRef]
  6. M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds., Vol. 100 of SPIE Milestone Series, (SPIE Press, Bellingham, Wash., 1994), pp. 389–398.
  7. S. Dyne, P. Collins, D. Tunbridge, “Satellite mechanical health monitoring,” in Proceedings of the IEE Colloquium on Advanced Vibration Measurements, Techniques and Instrumentation for the Early Predication of Failure, (Institution of Electrical Engineers, London, 1992), pp. 4/1–8.
  8. S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” in Proceedings of the IEE Colloquium on High Accuracy Platform Control in Space, (Institution of Electrical Engineers, London, 1993), pp. 12/1–6.
  9. K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
    [CrossRef]
  10. C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
    [CrossRef]
  11. V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
    [CrossRef]
  12. T. E. Busch, V. A. Skormin, “Adaptive control of transmitter power in free-space laser communication,” in Classified Proceedings of the Military Communications Conference 1997, Unclassified Papers (IEEE Service Center, Piscataway, N.J., 1997), Vol. 1, pp. 11–15.
  13. R. M. Gagliardi, S. Karp, Optical Communication, 2nd ed. (Wiley, New York, 1995), Chap. 10, pp. 305–344.
  14. M. R. Spiegel, Mathematical Handbook (McGraw-Hill, New York, 1968), p. 99.

1998

1997

S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations—analog case,” Opt. Eng. 36, 175–182 (1997).
[CrossRef]

S. Arnon, N. S. Kopeika, “Laser satellite communication networks—vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
[CrossRef]

1995

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

1989

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

1988

K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
[CrossRef]

Arnon, S.

S. Arnon, N. S. Kopeika, “Performance limitations of free-space optical communication satellite network owing to vibrations: heterodyne detection,” Appl. Opt. 37, 6366–6374 (1998).
[CrossRef]

S. Arnon, N. S. Kopeika, “Laser satellite communication networks—vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
[CrossRef]

S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations—analog case,” Opt. Eng. 36, 175–182 (1997).
[CrossRef]

Barry, J. D.

K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
[CrossRef]

Busch, T. E.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

T. E. Busch, V. A. Skormin, “Adaptive control of transmitter power in free-space laser communication,” in Classified Proceedings of the Military Communications Conference 1997, Unclassified Papers (IEEE Service Center, Piscataway, N.J., 1997), Vol. 1, pp. 11–15.

Casey, W. L.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, Mass., 1995).

Chen, C. C.

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Collins, P.

S. Dyne, P. Collins, D. Tunbridge, “Satellite mechanical health monitoring,” in Proceedings of the IEE Colloquium on Advanced Vibration Measurements, Techniques and Instrumentation for the Early Predication of Failure, (Institution of Electrical Engineers, London, 1992), pp. 4/1–8.

Collins, P. P.

S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” in Proceedings of the IEE Colloquium on High Accuracy Platform Control in Space, (Institution of Electrical Engineers, London, 1993), pp. 12/1–6.

Dyne, S.

S. Dyne, P. Collins, D. Tunbridge, “Satellite mechanical health monitoring,” in Proceedings of the IEE Colloquium on Advanced Vibration Measurements, Techniques and Instrumentation for the Early Predication of Failure, (Institution of Electrical Engineers, London, 1992), pp. 4/1–8.

Dyne, S. J. C.

S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” in Proceedings of the IEE Colloquium on High Accuracy Platform Control in Space, (Institution of Electrical Engineers, London, 1993), pp. 12/1–6.

Gagliardi, R. M.

R. M. Gagliardi, S. Karp, Optical Communication, 2nd ed. (Wiley, New York, 1995), Chap. 10, pp. 305–344.

Gardner, C. S.

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Held, K. J.

K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
[CrossRef]

Karp, S.

R. M. Gagliardi, S. Karp, Optical Communication, 2nd ed. (Wiley, New York, 1995), Chap. 10, pp. 305–344.

Kopeika, N. S.

S. Arnon, N. S. Kopeika, “Performance limitations of free-space optical communication satellite network owing to vibrations: heterodyne detection,” Appl. Opt. 37, 6366–6374 (1998).
[CrossRef]

S. Arnon, N. S. Kopeika, “Laser satellite communication networks—vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
[CrossRef]

S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations—analog case,” Opt. Eng. 36, 175–182 (1997).
[CrossRef]

Lambert, S. G.

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, Mass., 1995).

Skormin, V. A.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

T. E. Busch, V. A. Skormin, “Adaptive control of transmitter power in free-space laser communication,” in Classified Proceedings of the Military Communications Conference 1997, Unclassified Papers (IEEE Service Center, Piscataway, N.J., 1997), Vol. 1, pp. 11–15.

Spiegel, M. R.

M. R. Spiegel, Mathematical Handbook (McGraw-Hill, New York, 1968), p. 99.

Tascillo, M. A.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

Tunbridge, D.

S. Dyne, P. Collins, D. Tunbridge, “Satellite mechanical health monitoring,” in Proceedings of the IEE Colloquium on Advanced Vibration Measurements, Techniques and Instrumentation for the Early Predication of Failure, (Institution of Electrical Engineers, London, 1992), pp. 4/1–8.

Tunbridge, D. E. L.

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds., Vol. 100 of SPIE Milestone Series, (SPIE Press, Bellingham, Wash., 1994), pp. 389–398.

S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” in Proceedings of the IEE Colloquium on High Accuracy Platform Control in Space, (Institution of Electrical Engineers, London, 1993), pp. 12/1–6.

van Holtz, L.

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds., Vol. 100 of SPIE Milestone Series, (SPIE Press, Bellingham, Wash., 1994), pp. 389–398.

Vermeulen, H. C.

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds., Vol. 100 of SPIE Milestone Series, (SPIE Press, Bellingham, Wash., 1994), pp. 389–398.

Wittig, M.

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds., Vol. 100 of SPIE Milestone Series, (SPIE Press, Bellingham, Wash., 1994), pp. 389–398.

Appl. Opt.

IEEE Trans. Commun.

C. C. Chen, C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Opt. Eng.

V. A. Skormin, M. A. Tascillo, T. E. Busch, “Adaptive jitter rejection technique applicable to airborne laser communication systems,” Opt. Eng. 34, 1263–1268 (1995).
[CrossRef]

K. J. Held, J. D. Barry, “Precision pointing and tracking between satellite-borne optical systems,” Opt. Eng. 27, 325–333 (1988).
[CrossRef]

S. Arnon, N. S. Kopeika, “The performance limitations of free space optical communication satellite networks due to vibrations—analog case,” Opt. Eng. 36, 175–182 (1997).
[CrossRef]

Proc. IEEE

S. Arnon, N. S. Kopeika, “Laser satellite communication networks—vibration effects and possible solutions,” Proc. IEEE 85, 1646–1661 (1997).
[CrossRef]

Other

Motorola Global Communications Inc., “Application for Celestri multimedia LEO system” (Federal Communications Commission, Washington, D.C., 1997).

S. G. Lambert, W. L. Casey, Laser Communication in Space (Artech House, Boston, Mass., 1995).

M. Wittig, L. van Holtz, D. E. L. Tunbridge, H. C. Vermeulen, “In orbit measurements of microaccelerations of ESA’s communication satellite OLYMPUS,” in Selected Papers on Free-Space Laser Communication II, D. L. Begly, B. J. Thompson, eds., Vol. 100 of SPIE Milestone Series, (SPIE Press, Bellingham, Wash., 1994), pp. 389–398.

S. Dyne, P. Collins, D. Tunbridge, “Satellite mechanical health monitoring,” in Proceedings of the IEE Colloquium on Advanced Vibration Measurements, Techniques and Instrumentation for the Early Predication of Failure, (Institution of Electrical Engineers, London, 1992), pp. 4/1–8.

S. J. C. Dyne, D. E. L. Tunbridge, P. P. Collins, “The vibration environment on a satellite in orbit,” in Proceedings of the IEE Colloquium on High Accuracy Platform Control in Space, (Institution of Electrical Engineers, London, 1993), pp. 12/1–6.

T. E. Busch, V. A. Skormin, “Adaptive control of transmitter power in free-space laser communication,” in Classified Proceedings of the Military Communications Conference 1997, Unclassified Papers (IEEE Service Center, Piscataway, N.J., 1997), Vol. 1, pp. 11–15.

R. M. Gagliardi, S. Karp, Optical Communication, 2nd ed. (Wiley, New York, 1995), Chap. 10, pp. 305–344.

M. R. Spiegel, Mathematical Handbook (McGraw-Hill, New York, 1968), p. 99.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Vibration sources.

Fig. 2
Fig. 2

Adaptive transmitter.

Fig. 3
Fig. 3

Required transmitter power for practical satellite link versus vibration amplitude.

Tables (2)

Tables Icon

Table 1 Parameters K 1 and K 2 for Detection Schemesa

Tables Icon

Table 2 Parameters of Practical Optical Communication Satellite Link

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

fRθ=fTθ=θσθ2exp-θ22σθ2,
SNR=K22RPTηRηTGRGTλ/4πz2/qBW,
GT=2πWλ2,
GR=πDRλ2,
BER=00  K1 exp-SNR exp-GTθT2×LRθRcos2θPfTθTfRθRfpθpdθpdθTdθR,
BER=0K1 exp[-SNR exp-GTθT2×θTσθ2exp-θT22σθ2dθT.
BER=0K1 exp-SNR exp-GTθR2×θRσθ2exp-θR22σθ2dθR.
BER=K101exp-Zb+1SNRZdZ.
BER=-K101LnZexp-ZbSNRdZ,
b=2GTσθ2.
BER=constPT 00 K1 exp-SNR exp-GTθR2×fTθTfRθRfθPdθRdθTdθp.
BER=const PT-K101LnZexp-ZbSNRdZ.
exp-ZbSNR=i=0 -ZbSNRii!.
BER=const PT-K101LnZi=0 -ZbSNRii!dZ.
BER=constPT -K1i=0SNRii!-1i01 ZbiLnZdZ.
01 ZbiLnZdZ=-1bi+12.
BER=const PTK1i=0SNRii!bi+12-1i.
PT=SNRqBW2RK2ηRηTGRGTλ4πz2.

Metrics