Abstract

The change in the absorption loss of IR-transmitting chalcogenide glass fibers in the temperature range of -90 °C ≤ T ≤ 70 °C was investigated. For sulfur-based glass fibers the change in loss relative to room temperature was slightly affected by the temperature in the wavelength region of 1–5 µm. For λ ≥ 6 µm the change in loss was mainly due to multiphonon absorption. The change in loss for tellurium-based glass fibers increased significantly at T = 60 °C. The increase in the loss at short wavelengths (λ ≤ 4.1 µm) was due to electronic excitations in the tail states. Between 5 and 9 µm there was noticeable free-carrier absorption. Beyond λ ≥ 9 µm, multiphonon absorption dominated the loss spectrum.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Gannon, “Materials for mid-infrared waveguides,” in Infrared Fibers, L. G. DeShazer, ed., Proc. SPIE266, 62–68 (1981).
    [CrossRef]
  2. J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
    [CrossRef]
  3. G. Nau, F. Bucholtz, K. J. Ewing, S. T. Vohra, J. S. Sanghera, I. D. Aggarwal, “Fiber optic IR reflectance sensor for the cone penetrometer,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. V. Dinh, ed., Proc. SPIE2504, 291–296 (1995).
    [CrossRef]
  4. L. E. Busse, J. S. Sanghera, I. D. Aggarwal, “High optical power transmission through glass cladded infrared fiber,” in Proceedings of the 1994 Infrared Information Symposia Specialty Group Infrared Materials (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1995), p. 341.
  5. J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
    [CrossRef]
  6. L. E. Busse, J. Moon, J. S. Sanghera, I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser World Focus 32, 143–150 (1996).
  7. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
    [CrossRef]
  8. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60–x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
    [CrossRef]
  9. J. Tauc, R. Grigorovici, A. Vancu, “Optical properties of electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
    [CrossRef]
  10. M. F. Churbanov, “High purity chalcogenide glasses as material for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
    [CrossRef]
  11. M. Lax, E. Burstein, “Infrared lattice absorption in ionic and homopolar crystals,” Phys. Rev. 97, 39–52 (1955).
    [CrossRef]
  12. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University, London, 1954).
  13. G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, “Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibers,” Int. J. Optoelectron. 7, 237–254 (1992).
  14. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324–1325 (1953).
    [CrossRef]
  15. J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).
  16. I. Inagawa, S. Moromoto, T. Yamashita, I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229–2235 (1997).
    [CrossRef]
  17. R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51, 341–367 (1979).
    [CrossRef]
  18. M. E. Lines, “Physical properties of materials: theoretical overview,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991).
  19. N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart, Winston, New York, 1976).

1997

I. Inagawa, S. Moromoto, T. Yamashita, I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229–2235 (1997).
[CrossRef]

1996

L. E. Busse, J. Moon, J. S. Sanghera, I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser World Focus 32, 143–150 (1996).

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60–x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[CrossRef]

1995

M. F. Churbanov, “High purity chalcogenide glasses as material for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[CrossRef]

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[CrossRef]

1994

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[CrossRef]

1992

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, “Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibers,” Int. J. Optoelectron. 7, 237–254 (1992).

1979

R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51, 341–367 (1979).
[CrossRef]

1966

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties of electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

1955

M. Lax, E. Burstein, “Infrared lattice absorption in ionic and homopolar crystals,” Phys. Rev. 97, 39–52 (1955).
[CrossRef]

1953

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324–1325 (1953).
[CrossRef]

Aggarwal, I. D.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60–x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[CrossRef]

L. E. Busse, J. Moon, J. S. Sanghera, I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser World Focus 32, 143–150 (1996).

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
[CrossRef]

L. E. Busse, J. S. Sanghera, I. D. Aggarwal, “High optical power transmission through glass cladded infrared fiber,” in Proceedings of the 1994 Infrared Information Symposia Specialty Group Infrared Materials (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1995), p. 341.

G. Nau, F. Bucholtz, K. J. Ewing, S. T. Vohra, J. S. Sanghera, I. D. Aggarwal, “Fiber optic IR reflectance sensor for the cone penetrometer,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. V. Dinh, ed., Proc. SPIE2504, 291–296 (1995).
[CrossRef]

Ashcroft, N. W.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart, Winston, New York, 1976).

Born, M.

M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University, London, 1954).

Bucholtz, F.

G. Nau, F. Bucholtz, K. J. Ewing, S. T. Vohra, J. S. Sanghera, I. D. Aggarwal, “Fiber optic IR reflectance sensor for the cone penetrometer,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. V. Dinh, ed., Proc. SPIE2504, 291–296 (1995).
[CrossRef]

Burstein, E.

M. Lax, E. Burstein, “Infrared lattice absorption in ionic and homopolar crystals,” Phys. Rev. 97, 39–52 (1955).
[CrossRef]

Busse, L. E.

L. E. Busse, J. Moon, J. S. Sanghera, I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser World Focus 32, 143–150 (1996).

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
[CrossRef]

L. E. Busse, J. S. Sanghera, I. D. Aggarwal, “High optical power transmission through glass cladded infrared fiber,” in Proceedings of the 1994 Infrared Information Symposia Specialty Group Infrared Materials (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1995), p. 341.

Churbanov, M. F.

M. F. Churbanov, “High purity chalcogenide glasses as material for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[CrossRef]

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, “Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibers,” Int. J. Optoelectron. 7, 237–254 (1992).

Devyatykh, G. G.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, “Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibers,” Int. J. Optoelectron. 7, 237–254 (1992).

Dianov, E. M.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, “Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibers,” Int. J. Optoelectron. 7, 237–254 (1992).

Ewing, K. J.

G. Nau, F. Bucholtz, K. J. Ewing, S. T. Vohra, J. S. Sanghera, I. D. Aggarwal, “Fiber optic IR reflectance sensor for the cone penetrometer,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. V. Dinh, ed., Proc. SPIE2504, 291–296 (1995).
[CrossRef]

Gannon, J. R.

J. R. Gannon, “Materials for mid-infrared waveguides,” in Infrared Fibers, L. G. DeShazer, ed., Proc. SPIE266, 62–68 (1981).
[CrossRef]

Grigorovici, R.

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties of electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Huang, K.

M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University, London, 1954).

Inagawa, I.

I. Inagawa, S. Moromoto, T. Yamashita, I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229–2235 (1997).
[CrossRef]

Kung, F. H.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60–x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[CrossRef]

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
[CrossRef]

Lax, M.

M. Lax, E. Burstein, “Infrared lattice absorption in ionic and homopolar crystals,” Phys. Rev. 97, 39–52 (1955).
[CrossRef]

Lines, M. E.

M. E. Lines, “Physical properties of materials: theoretical overview,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991).

Mermin, N. D.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart, Winston, New York, 1976).

Miklos, R.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60–x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
[CrossRef]

Moon, J.

L. E. Busse, J. Moon, J. S. Sanghera, I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser World Focus 32, 143–150 (1996).

Moromoto, S.

I. Inagawa, S. Moromoto, T. Yamashita, I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229–2235 (1997).
[CrossRef]

Mossadegh, R.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
[CrossRef]

Nau, G.

G. Nau, F. Bucholtz, K. J. Ewing, S. T. Vohra, J. S. Sanghera, I. D. Aggarwal, “Fiber optic IR reflectance sensor for the cone penetrometer,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. V. Dinh, ed., Proc. SPIE2504, 291–296 (1995).
[CrossRef]

Nguyen, V. Q.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60–x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
[CrossRef]

Olshansky, R.

R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51, 341–367 (1979).
[CrossRef]

Pankove, J. I.

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).

Plotnichenko, V. G.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, “Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibers,” Int. J. Optoelectron. 7, 237–254 (1992).

Pureza, P. C.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60–x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[CrossRef]

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
[CrossRef]

Sanghera, J. S.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60–x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[CrossRef]

L. E. Busse, J. Moon, J. S. Sanghera, I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser World Focus 32, 143–150 (1996).

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[CrossRef]

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
[CrossRef]

L. E. Busse, J. S. Sanghera, I. D. Aggarwal, “High optical power transmission through glass cladded infrared fiber,” in Proceedings of the 1994 Infrared Information Symposia Specialty Group Infrared Materials (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1995), p. 341.

G. Nau, F. Bucholtz, K. J. Ewing, S. T. Vohra, J. S. Sanghera, I. D. Aggarwal, “Fiber optic IR reflectance sensor for the cone penetrometer,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. V. Dinh, ed., Proc. SPIE2504, 291–296 (1995).
[CrossRef]

Scripachev, I. V.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, “Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibers,” Int. J. Optoelectron. 7, 237–254 (1992).

Shirotani, I.

I. Inagawa, S. Moromoto, T. Yamashita, I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229–2235 (1997).
[CrossRef]

Tauc, J.

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties of electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Urbach, F.

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324–1325 (1953).
[CrossRef]

Vancu, A.

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties of electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Vohra, S. T.

G. Nau, F. Bucholtz, K. J. Ewing, S. T. Vohra, J. S. Sanghera, I. D. Aggarwal, “Fiber optic IR reflectance sensor for the cone penetrometer,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. V. Dinh, ed., Proc. SPIE2504, 291–296 (1995).
[CrossRef]

Yamashita, T.

I. Inagawa, S. Moromoto, T. Yamashita, I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229–2235 (1997).
[CrossRef]

Int. J. Optoelectron.

G. G. Devyatykh, M. F. Churbanov, I. V. Scripachev, E. M. Dianov, V. G. Plotnichenko, “Middle infrared As–S, As–Se, Ge–As–Se chalcogenide glass fibers,” Int. J. Optoelectron. 7, 237–254 (1992).

J. Am. Ceram. Soc.

J. S. Sanghera, F. H. Kung, L. E. Busse, P. C. Pureza, I. D. Aggarwal, “Infrared evanescent absorption spectroscopy of toxic chemicals using chalcogenide glass fibers,” J. Am. Ceram. Soc. 78, 2198–2202 (1995).
[CrossRef]

J. Lightwave Technol.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, I. D. Aggarwal, “Fabrication of low-loss IR-transmitting Ge30As10Se30Te30 glass fibers,” J. Lightwave Technol. 12, 737–741 (1994).
[CrossRef]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. Miklos, F. H. Kung, I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As40S(60–x)Sex glass fibers,” J. Lightwave Technol. 14, 743–748 (1996).
[CrossRef]

J. Non-Cryst. Solids

M. F. Churbanov, “High purity chalcogenide glasses as material for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[CrossRef]

Jpn. J. Appl. Phys.

I. Inagawa, S. Moromoto, T. Yamashita, I. Shirotani, “Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl. Phys. 36, 2229–2235 (1997).
[CrossRef]

Laser World Focus

L. E. Busse, J. Moon, J. S. Sanghera, I. D. Aggarwal, “Chalcogenide fibers deliver high IR power,” Laser World Focus 32, 143–150 (1996).

Phys. Rev.

M. Lax, E. Burstein, “Infrared lattice absorption in ionic and homopolar crystals,” Phys. Rev. 97, 39–52 (1955).
[CrossRef]

F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324–1325 (1953).
[CrossRef]

Phys. Status Solidi

J. Tauc, R. Grigorovici, A. Vancu, “Optical properties of electronic structure of amorphous germanium,” Phys. Status Solidi 15, 627–637 (1966).
[CrossRef]

Rev. Mod. Phys.

R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys. 51, 341–367 (1979).
[CrossRef]

Other

M. E. Lines, “Physical properties of materials: theoretical overview,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991).

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Holt, Rinehart, Winston, New York, 1976).

J. I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971).

M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University, London, 1954).

J. R. Gannon, “Materials for mid-infrared waveguides,” in Infrared Fibers, L. G. DeShazer, ed., Proc. SPIE266, 62–68 (1981).
[CrossRef]

G. Nau, F. Bucholtz, K. J. Ewing, S. T. Vohra, J. S. Sanghera, I. D. Aggarwal, “Fiber optic IR reflectance sensor for the cone penetrometer,” in Environmental Monitoring and Hazardous Waste Site Remediation, T. V. Dinh, ed., Proc. SPIE2504, 291–296 (1995).
[CrossRef]

L. E. Busse, J. S. Sanghera, I. D. Aggarwal, “High optical power transmission through glass cladded infrared fiber,” in Proceedings of the 1994 Infrared Information Symposia Specialty Group Infrared Materials (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1995), p. 341.

J. S. Sanghera, I. D. Aggarwal, L. E. Busse, P. C. Pureza, V. Q. Nguyen, R. Miklos, F. H. Kung, R. Mossadegh, “Development of low loss IR transmitting chalcogenide glass fibers,” in Biomedical Optoelectronic Instrumentation, A. Katzir, A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 71–77 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for measuring heating effects on chalcogenide fiber.

Fig. 2
Fig. 2

Experimental setup for measuring cooling effects on chalcogenide fiber.

Fig. 3
Fig. 3

Determination of the optical gap (αh ν)1/2 as a function of photon energy (h ν).

Fig. 4
Fig. 4

Effect of heating on the change in loss of sulfide fiber. During heating for each measurement the temperature was held for 10 min to achieve equilibrium. Between 20 and 70 °C the thermally induced losses are exactly the same, i.e., reversible with temperature during heating up and during cooling down to room temperature.

Fig. 5
Fig. 5

Comparison between change in loss of sulfide fibers made with high- and low-purity chemicals at a temperature of 50 °C.

Fig. 6
Fig. 6

Effect of cooling on the change in loss of sulfide fiber. For each measurement the temperature was held for ∼5 min to achieve equilibrium. Between 20 ≤ T ≤ -90 °C the thermally induced losses are exactly the same because the experiment was repeated three times with the same fiber.

Fig. 7
Fig. 7

Change in loss of sulfide fiber as a function of temperature at distinct wavelengths.

Fig. 8
Fig. 8

Effect of heating on the change in loss of telluride fiber. During heating for each measurement the temperature was held for 10 min to achieve equilibrium. Between 20 and 60 °C the thermally induced losses are exactly the same during heating up and during cooling down to room temperature.

Fig. 9
Fig. 9

Effect of cooling on the change in loss of telluride fiber. For each measurement the temperature was held at ∼5 min to achieve equilibrium. Between 20 ≤ T ≤ -60 °C the thermally induced losses are exactly the same because the experiment was repeated three times with the same fiber.

Fig. 10
Fig. 10

Change in loss of telluride fiber as a function of temperature at distinct wavelengths.

Tables (3)

Tables Icon

Table 1 Optical and Thermal Properties of Telluride and Sulfide Glasses

Tables Icon

Table 2 Temperature Dependence of the Change in Loss of Telluride and Sulfide Glasses

Tables Icon

Table 3 Loss with Respect to Temperature Owing to Rayleigh Scattering, d(αRS)/dT

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

relative Δloss dB/m=-10llog1-|Δtrans|×Δtrans|Δtrans|,
αhν1/2=Bhν-E0,
Δαmp=ATexpbTλ-A expbλ,
Δαel=CTexpdT/λ-C expd/λ,
αfc=Gλm,
αRS=83π3λ4 n8p2βTkBTg=CRSλ4,

Metrics