Abstract

We have reexamined the contribution of Raman scattering to the water-leaving radiance in case 1 waters by carrying out radiative transfer simulations that combine the latest reported measurements of the absorption coefficient of pure water with direct measurements of the spectral variation of the Raman-scattering coefficient. The resulting contribution of Raman scattering is then compared with experimental measurements of the water-leaving radiance, and the fractional contribution of radiance produced by Raman scattering to the total radiance measured at a given wavelength is determined. The results show that (1) the contribution of Raman scattering to the water-leaving radiance in an ocean of pure seawater is as much as 50–100% larger than earlier predictions, and (2) the Raman contribution does not decay as rapidly with increasing concentrations of chlorophyllouslike pigments C as predicted earlier. In fact, the Raman fraction for C ≲ 1 mg/m3 is approximately ≳8% at wavelengths of interest in ocean color remote sensing and therefore cannot be ignored in ocean color modeling.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
    [CrossRef]
  2. R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice 1h,” Appl. Opt. 14, 2116–2120 (1975).
    [CrossRef] [PubMed]
  3. C. H. Chang, L. A. Young, Sea Water Temperature Measurement from Raman Spectra, (Avco Everett Research Laboratory, Inc., 2385 Revere Beach Parkway, Everett, Mass., January1974).
  4. R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
    [CrossRef] [PubMed]
  5. B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
    [CrossRef] [PubMed]
  6. R. H. Stavn, “Raman scattering effects at the shorter visible wavelengths in clear ocean water,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 94–100 (1990).
    [CrossRef]
  7. G. W. Kattawar, X. Xu, “Filling in of Fraunhofer lines in the ocean by Raman scattering,” Appl. Opt. 31, 6491–6500 (1992).
    [CrossRef] [PubMed]
  8. Y. Ge, H. R. Gordon, K. J. Voss, “Simulations of inelastic scattering contributions to the irradiance fields in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
    [PubMed]
  9. G. W. Faris, R. A. Copeland, “Wavelength dependence of the Raman cross section for liquid water,” Appl. Opt. 36, 2686–2688 (1997).
    [CrossRef] [PubMed]
  10. K. J. Waters, “Effects of Raman scattering on water-leaving radiance,” J. Geophys. Res. 100, 13,151–13,161 (1995).
    [CrossRef]
  11. Y. Ge, K. J. Voss, H. R. Gordon, “In situ measurements of inelastic scattering in Monterey Bay using solar Fraunhofer lines,” J. Geophys. Res. 100, 13,227–13,236 (1995).
    [CrossRef]
  12. C. Hu, K. J. Voss, “In situ measurements of Raman scattering in clear ocean water,” Appl. Opt. 36, 6962–6967 (1997).
    [CrossRef]
  13. J. S. Bartlett, K. J. Voss, S. Sathyendranath, A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
    [CrossRef]
  14. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
    [CrossRef]
  15. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
    [CrossRef] [PubMed]
  16. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
    [CrossRef] [PubMed]
  17. A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
    [CrossRef] [PubMed]
  18. R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  19. F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
    [CrossRef]
  20. H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
    [CrossRef]
  21. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [CrossRef] [PubMed]
  22. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  23. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.
  24. S. P. S. Porto, “Angular dependence and depolarization ratio of the Raman effect,” J. Opt. Soc. Am. 56, 1585–1589 (1966).
    [CrossRef]
  25. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  26. T. J. Petzold, “Volume Scattering functions for Selected Natural Waters,” (Scripps Institution of Oceanography, Visibility Laboratory, San Diego, Calif., 92152, 1972).
  27. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
    [CrossRef] [PubMed]
  28. A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
    [CrossRef]
  29. H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phy. 90, 205–258 (1984).
  30. G. W. Kattawar, C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
    [CrossRef]
  31. G. W. Kattawar, C. N. Adams, “Errors in radiance calculations induced by using scalar rather than Stokes vector theory in a realistic ocean atmosphere system,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 2–12 (1990).
    [CrossRef]
  32. F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).
  33. H. R. Gordon, “A bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean,” Appl. Opt. 26, 4133–4148 (1987).
    [CrossRef] [PubMed]
  34. G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transfer 15, 839–849 (1975).
    [CrossRef]
  35. D. K. Clark, “Phytoplankton algorithms for the Nimbus-7 CZCS,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981) pp. 227–238.
    [CrossRef]
  36. H. R. Gordon, D. K. Clark, “Atmospheric effects in the remote sensing of phytoplankton pigments,” Boundary-Layer Meteorol. 18, 299–313 (1980).
    [CrossRef]
  37. H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
    [CrossRef] [PubMed]
  38. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983).
    [CrossRef] [PubMed]
  39. H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
    [CrossRef] [PubMed]
  40. C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 110, 13,279–13,294 (1995).
    [CrossRef]
  41. H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
    [CrossRef]
  42. S. Sathyendranath, T. Platt, “Ocean-color model incorporating transspectral processes,” Appl. Opt. 37, 2216–2227 (1998).
    [CrossRef]

1998 (2)

1997 (4)

1996 (1)

1995 (3)

C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 110, 13,279–13,294 (1995).
[CrossRef]

K. J. Waters, “Effects of Raman scattering on water-leaving radiance,” J. Geophys. Res. 100, 13,151–13,161 (1995).
[CrossRef]

Y. Ge, K. J. Voss, H. R. Gordon, “In situ measurements of inelastic scattering in Monterey Bay using solar Fraunhofer lines,” J. Geophys. Res. 100, 13,227–13,236 (1995).
[CrossRef]

1993 (3)

1992 (3)

1991 (2)

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

1990 (1)

1989 (1)

G. W. Kattawar, C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
[CrossRef]

1988 (2)

R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

1987 (1)

1984 (2)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phy. 90, 205–258 (1984).

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

1983 (1)

1981 (3)

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

1980 (2)

H. R. Gordon, D. K. Clark, “Atmospheric effects in the remote sensing of phytoplankton pigments,” Boundary-Layer Meteorol. 18, 299–313 (1980).
[CrossRef]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

1975 (2)

G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transfer 15, 839–849 (1975).
[CrossRef]

R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice 1h,” Appl. Opt. 14, 2116–2120 (1975).
[CrossRef] [PubMed]

1966 (1)

Abreu, L. W.

F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).

Adams, C. N.

G. W. Kattawar, C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
[CrossRef]

G. W. Kattawar, C. N. Adams, “Errors in radiance calculations induced by using scalar rather than Stokes vector theory in a realistic ocean atmosphere system,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 2–12 (1990).
[CrossRef]

Anderson, G. P.

F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

Bartlett, J. S.

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Chang, C. H.

C. H. Chang, L. A. Young, Sea Water Temperature Measurement from Raman Spectra, (Avco Everett Research Laboratory, Inc., 2385 Revere Beach Parkway, Everett, Mass., January1974).

Chetwynd, J. H.

F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, “Atmospheric effects in the remote sensing of phytoplankton pigments,” Boundary-Layer Meteorol. 18, 299–313 (1980).
[CrossRef]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

D. K. Clark, “Phytoplankton algorithms for the Nimbus-7 CZCS,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981) pp. 227–238.
[CrossRef]

Clough, S. A.

F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).

Copeland, R. A.

Derr, V. E.

Ding, K.

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

Evans, R. H.

Faris, G. W.

Fry, E. S.

Gallery, W. O.

F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).

Ge, Y.

Y. Ge, K. J. Voss, H. R. Gordon, “In situ measurements of inelastic scattering in Monterey Bay using solar Fraunhofer lines,” J. Geophys. Res. 100, 13,227–13,236 (1995).
[CrossRef]

Y. Ge, H. R. Gordon, K. J. Voss, “Simulations of inelastic scattering contributions to the irradiance fields in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
[PubMed]

Gentili, B.

Gordon, H. R.

Y. Ge, K. J. Voss, H. R. Gordon, “In situ measurements of inelastic scattering in Monterey Bay using solar Fraunhofer lines,” J. Geophys. Res. 100, 13,227–13,236 (1995).
[CrossRef]

Y. Ge, H. R. Gordon, K. J. Voss, “Simulations of inelastic scattering contributions to the irradiance fields in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
[PubMed]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
[CrossRef] [PubMed]

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

H. R. Gordon, “A bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean,” Appl. Opt. 26, 4133–4148 (1987).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, “Atmospheric effects in the remote sensing of phytoplankton pigments,” Boundary-Layer Meteorol. 18, 299–313 (1980).
[CrossRef]

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

Hovis, W. A.

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

Hu, C.

Jin, Z.

Kattawar, G. W.

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

G. W. Kattawar, X. Xu, “Filling in of Fraunhofer lines in the ocean by Raman scattering,” Appl. Opt. 31, 6491–6500 (1992).
[CrossRef] [PubMed]

G. W. Kattawar, C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
[CrossRef]

G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transfer 15, 839–849 (1975).
[CrossRef]

G. W. Kattawar, C. N. Adams, “Errors in radiance calculations induced by using scalar rather than Stokes vector theory in a realistic ocean atmosphere system,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 2–12 (1990).
[CrossRef]

Kenizys, F. X.

F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).

Kishino, M.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Labs, D.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phy. 90, 205–258 (1984).

Marshall, B. R.

Mobley, C. D.

Morel, A.

Morel, A. Y.

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

Mueller, J. L.

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

Neckel, H.

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phy. 90, 205–258 (1984).

Okami, N.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Perry, M. J.

C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 110, 13,279–13,294 (1995).
[CrossRef]

Petzold, T. J.

T. J. Petzold, “Volume Scattering functions for Selected Natural Waters,” (Scripps Institution of Oceanography, Visibility Laboratory, San Diego, Calif., 92152, 1972).

Platt, T.

Pope, R. M.

Porto, S. P. S.

Prieur, L.

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Reinersman, P.

Roesler, C. S.

C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 110, 13,279–13,294 (1995).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath, T. Platt, “Ocean-color model incorporating transspectral processes,” Appl. Opt. 37, 2216–2227 (1998).
[CrossRef]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Selby, J. E. A.

F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).

Shettle, E. P.

F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).

Slusher, R. B.

Smith, R. C.

Sogandares, F. M.

Stamnes, K.

Stavn, R. H.

Sugihara, S.

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

Vodacek, A.

Voss, K. J.

Waters, K. J.

K. J. Waters, “Effects of Raman scattering on water-leaving radiance,” J. Geophys. Res. 100, 13,151–13,161 (1995).
[CrossRef]

Weidemann, A. D.

Xu, X.

Young, L. A.

C. H. Chang, L. A. Young, Sea Water Temperature Measurement from Raman Spectra, (Avco Everett Research Laboratory, Inc., 2385 Revere Beach Parkway, Everett, Mass., January1974).

Appl. Opt. (20)

R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice 1h,” Appl. Opt. 14, 2116–2120 (1975).
[CrossRef] [PubMed]

R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4002–4011 (1988).
[CrossRef] [PubMed]

B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990).
[CrossRef] [PubMed]

G. W. Kattawar, X. Xu, “Filling in of Fraunhofer lines in the ocean by Raman scattering,” Appl. Opt. 31, 6491–6500 (1992).
[CrossRef] [PubMed]

Y. Ge, H. R. Gordon, K. J. Voss, “Simulations of inelastic scattering contributions to the irradiance fields in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993).
[PubMed]

G. W. Faris, R. A. Copeland, “Wavelength dependence of the Raman cross section for liquid water,” Appl. Opt. 36, 2686–2688 (1997).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32, 6864–6879 (1993).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote sensing problem,” Appl. Opt. 35, 4850–4862 (1996).
[CrossRef] [PubMed]

R. M. Pope, E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

F. M. Sogandares, E. S. Fry, “Absorption spectrum (340–640 nm) of pure water. I. Photothermal measurements,” Appl. Opt. 36, 8699–8709 (1997).
[CrossRef]

C. Hu, K. J. Voss, “In situ measurements of Raman scattering in clear ocean water,” Appl. Opt. 36, 6962–6967 (1997).
[CrossRef]

J. S. Bartlett, K. J. Voss, S. Sathyendranath, A. Vodacek, “Raman scattering by pure water and seawater,” Appl. Opt. 37, 3324–3332 (1998).
[CrossRef]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
[CrossRef] [PubMed]

H. R. Gordon, “A bio-optical model describing the distribution of irradiance at the sea surface resulting from a point source embedded in the ocean,” Appl. Opt. 26, 4133–4148 (1987).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and Coastal Zone Color Scanner estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, “Clear water radiances for atmospheric correction of coastal zone color scanner imagery,” Appl. Opt. 20, 4175–4180 (1981).
[CrossRef] [PubMed]

S. Sathyendranath, T. Platt, “Ocean-color model incorporating transspectral processes,” Appl. Opt. 37, 2216–2227 (1998).
[CrossRef]

Boundary-Layer Meteorol. (1)

H. R. Gordon, D. K. Clark, “Atmospheric effects in the remote sensing of phytoplankton pigments,” Boundary-Layer Meteorol. 18, 299–313 (1980).
[CrossRef]

J. Geophys. Res. (4)

C. S. Roesler, M. J. Perry, “In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance,” J. Geophys. Res. 110, 13,279–13,294 (1995).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, D. K. Clark, “A semi-analytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909–10,924 (1988).
[CrossRef]

K. J. Waters, “Effects of Raman scattering on water-leaving radiance,” J. Geophys. Res. 100, 13,151–13,161 (1995).
[CrossRef]

Y. Ge, K. J. Voss, H. R. Gordon, “In situ measurements of inelastic scattering in Monterey Bay using solar Fraunhofer lines,” J. Geophys. Res. 100, 13,227–13,236 (1995).
[CrossRef]

J. Oceanogr. Soc. Jpn. (1)

S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

G. W. Kattawar, “A three-parameter analytic phase function for multiple scattering calculations,” J. Quant. Spectrosc. Radiat. Transfer 15, 839–849 (1975).
[CrossRef]

Limnol. Oceanogr. (3)

G. W. Kattawar, C. N. Adams, “Stokes vector calculations of the submarine light field in an atmosphere-ocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization,” Limnol. Oceanogr. 34, 1453–1472 (1989).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

H. R. Gordon, K. Ding, “Self-shading of in-water optical instruments,” Limnol. Oceanogr. 37, 491–500 (1992).
[CrossRef]

Prog. Oceanogr. (1)

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).
[CrossRef]

Science (1)

H. R. Gordon, D. K. Clark, J. L. Mueller, W. A. Hovis, “Phytoplankton pigments derived from the Nimbus-7 CZCS: initial comparisons with surface measurements,” Science 210, 63–66 (1980).
[CrossRef] [PubMed]

Sol. Phy. (1)

H. Neckel, D. Labs, “The solar radiation between 3300 and 12500 Å,” Sol. Phy. 90, 205–258 (1984).

Other (8)

T. J. Petzold, “Volume Scattering functions for Selected Natural Waters,” (Scripps Institution of Oceanography, Visibility Laboratory, San Diego, Calif., 92152, 1972).

G. W. Kattawar, C. N. Adams, “Errors in radiance calculations induced by using scalar rather than Stokes vector theory in a realistic ocean atmosphere system,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 2–12 (1990).
[CrossRef]

F. X. Kenizys, E. P. Shettle, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, W. O. Gallery, J. E. A. Selby, S. A. Clough, Users Guide to lowtran 7, (Air Force Geophysics Laboratory, Hanscomb AFB, Mass. 01731, 1988).

D. K. Clark, “Phytoplankton algorithms for the Nimbus-7 CZCS,” in Oceanography from Space, J. R. F. Gower, ed. (Plenum, New York, 1981) pp. 227–238.
[CrossRef]

R. H. Stavn, “Raman scattering effects at the shorter visible wavelengths in clear ocean water,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 94–100 (1990).
[CrossRef]

C. H. Chang, L. A. Young, Sea Water Temperature Measurement from Raman Spectra, (Avco Everett Research Laboratory, Inc., 2385 Revere Beach Parkway, Everett, Mass., January1974).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielsen, eds. (Academic, New York, 1974), pp. 1–24.

H. R. Gordon, A. Y. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, New York, 1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Raman-scattering coefficient as a function of the Raman shift ν s for excitation at 488 nm (taken from Ge et al.7).

Fig. 2
Fig. 2

Raman depolarization ratio as a function of the Raman shift ν s for excitation at 488 nm (taken from Ge et al.7).

Fig. 3
Fig. 3

Raman fraction of L u for a water body consisting of pure seawater for θ0 = 20°, 37°, and 60°.

Fig. 4
Fig. 4

Raman fraction of E u for a water body consisting of pure seawater for θ0 = 20°, 37°, and 60°.

Fig. 5
Fig. 5

Raman contribution to L u (in milliwatts per square centimeter per micrometer per steradian) as a function of the model’s scattering parameter B for C = 0.05, 0.5, and 5.0 mg/m3. The solar zenith angle is 37°.

Fig. 6
Fig. 6

Raman fraction of (L w ) N as a function of C for θ0 = 37° and wavelengths of interest in ocean color remote sensing.

Tables (1)

Tables Icon

Table 1 Raman Component of Eu and Lu for Various Particle Phase Functionsa

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

cos θ dLz, θ, ϕ, λdz=-cz, λLz, θ, ϕ,λ+Ω βz, θ,ϕθ, ϕ, λ×Lz, θ, ϕ, λdΩ+ Ω βrz, θ, ϕθ, ϕ, λeλ×Lz, θ, ϕ,λedΩdλe.
cz, λ=az, λ+bz, λ+brz, λλ,
bz, λ=Ω βz, θ, ϕθ, ϕ, λdΩ,brz, λλ=Ω βrz, θ, ϕθ, ϕ, λλdΩ.
βrz, α, λeλ=316π1+3ρ1+2ρ×1+γ cos2 αbrz, λeλ,
γ=1-ρ1+3ρ
bλ=bwλ+B550/λC0.62,aλ=awλ+0.06AλC0.651+0.2Yλ,
Yλ=exp-0.014λ-440,
νsi brνsνsdνs brνsdνs,
ρi brνsρνsdνs brνsdνs,
cos θ dL0z, θ, λdz=-cz, λL0z, θ, λ+Ω β0z, θθ, λ×L0z, θ, λsin θ dθ+Jrz, θ, λ,
L0z, θ, λ=12π02π Lz, θ, ϕ, λdϕ,β0z, θθ, λ= 12π02π βz, θ, ϕ  θ, ϕ, λdϕ,
Jrz, θ, λ=14π  brz, λeλE0z, λe1+12×1-ρ1+2ρE2z, λeE0z, λe P2cos θdλe,
Elz, λe=2π 0π Plcos θL0z, θ, λesin θ dθ,
Jrz, θ, λ14π1+121-ρ1+2ρE2z,λ¯eE0z, λ¯e P2cos θ×E0z, λ¯eF0λ¯e  brz, λeλF0λedλe,
Jrz, θ, λ14π1+121-ρ1+2ρE2z, λ¯eE0z, λ¯e P2cos θ×E0z, λ¯eF0λ¯e F0br  brz, λeλdλe,
F0br F0λebrz, λeλdλe brz, λeλdλe, brz, λeλdλe=2.61×10-4589λ4.8±0.3 m-1.
fw=fw/ofw/o + T1 - fw/o,
Lwλ=LwλN cos θ0 exp-τrλ2+τOzλcos θ0,
f=LwNRQRLwNRQR+LwNEQE,
LwNE=LwNT-LwNR,

Metrics