Abstract

A narrow light beam that propagates in the atmosphere with less disturbance than conventional light beams is introduced. The operating method and features of the newly proposed long-range nondiffracting beam (LRNB) are briefly demonstrated. Some experimental results of the atmospheric propagation of this beam at a distance of 500 m are shown in comparison with a conventional collimated beam and a focused beam. The results and related analyses show that the LRNB is much less influenced by atmospheric turbulence than other beams and suggest that the LRNB can apply to many fields.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere (Wiley, New York, 1974).
  2. E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).
  3. V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds., Wave Propagation in Random Media (Scintillation), Vol. PM09 of SPIE Monographs and Handbooks (SPIE Press, Bellingham, Wash., 1993).
  4. J. I. Davis, “Consideration of atmospheric turbulence in laser systems design,” Appl. Opt. 5, 139–147 (1966).
    [CrossRef] [PubMed]
  5. D. H. Höhn, “Effects of atmospheric turbulence on the transmission of a laser beam at 6328 Å. 2: Frequency spectra,” Appl. Opt. 5, 1433–1436 (1966).
    [CrossRef] [PubMed]
  6. D. L. Fried, J. B. Seidman, “Laser-beam scintillation in the atmosphere,” J. Opt. Soc. Am. 57, 181–185 (1967).
    [CrossRef]
  7. A. L. Buck, “Effects of the atmosphere on laser beam propagation,” Appl. Opt. 6, 703–708 (1967).
    [CrossRef] [PubMed]
  8. S. S. Khmelevtsov, “Propagation of laser radiation in a turbulent atmosphere,” Appl. Opt. 12, 2412–2433 (1973).
    [CrossRef]
  9. J. A. Dowling, P. M. Livingston, “Behavior of focused beams in atmospheric turbulence: measurements and comments on the theory,” J. Opt. Soc. Am. 63, 846–858 (1973).
    [CrossRef]
  10. S. F. Clifford, “Physical propaties of the atmosphere in relation to laser probing,” Opt. Quantum Electron. 8, 95–104 (1976).
    [CrossRef]
  11. P. O. Minott, “Scintillation in an earth-to-space propagation path,” J. Opt. Soc. Am. 62, 885–888 (1972).
    [CrossRef]
  12. J. L. Bufton, “Scintillation statistics measured in an earth–space–earth retroreflector link,” Appl. Opt. 16, 2654–2660 (1977).
    [CrossRef] [PubMed]
  13. T. Aruga, K. Araki, R. Hayashi, T. Iwabuchi, M. Takahashi, M. Nakamura, “Earth-to-geosynchronous satellite laser beam transmission,” Appl. Opt. 24, 53–56 (1985).
    [CrossRef] [PubMed]
  14. M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 71–80 (1996).
    [CrossRef]
  15. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
    [CrossRef]
  16. Y. Zhao, R. M. Hardesty, “Technique for correcting effects of long CO2 laser pulses in aerosol-backscattered coherent lidar returns,” Appl. Opt. 27, 2719–2729 (1988).
    [CrossRef] [PubMed]
  17. R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit,” Appl. Opt. 25, 2546–2553 (1986).
    [CrossRef] [PubMed]
  18. A. K. Majumdar, “Optical communication between aircraft in low-visibility atmosphere using diode lasers,” Appl. Opt. 24, 3659–3665 (1985).
    [CrossRef] [PubMed]
  19. K. A. Winick, “Atmospheric turbulence-induced signal fades on optical heterodyne communication links,” Appl. Opt. 25, 1817–1825 (1986).
    [CrossRef] [PubMed]
  20. See, for example, R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News 4, 14–19 (1993).
  21. T. Aruga, “Generation of long-range nondiffracting narrow light beams,” Appl. Opt. 36, 3762–3768 (1997).
    [CrossRef] [PubMed]
  22. J. Durnin, J. J. Miceli, H. J. Eberley, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef] [PubMed]
  23. A. J. Cox, D. C. Dibble, “Constant-axial-intensity nondiffracting beam,” J. Opt. Soc. Am. A 9, 282–286 (1992).
    [CrossRef]
  24. J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3961 (1988).
    [CrossRef] [PubMed]
  25. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
    [CrossRef]

1997 (1)

1993 (2)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

See, for example, R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News 4, 14–19 (1993).

1992 (1)

1990 (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[CrossRef]

1988 (2)

1987 (1)

J. Durnin, J. J. Miceli, H. J. Eberley, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

1986 (2)

1985 (2)

1977 (1)

1976 (1)

S. F. Clifford, “Physical propaties of the atmosphere in relation to laser probing,” Opt. Quantum Electron. 8, 95–104 (1976).
[CrossRef]

1973 (2)

1972 (1)

1967 (2)

1966 (2)

Araki, K.

T. Aruga, K. Araki, R. Hayashi, T. Iwabuchi, M. Takahashi, M. Nakamura, “Earth-to-geosynchronous satellite laser beam transmission,” Appl. Opt. 24, 53–56 (1985).
[CrossRef] [PubMed]

M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 71–80 (1996).
[CrossRef]

Arimoto, Y.

M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 71–80 (1996).
[CrossRef]

Aruga, T.

T. Aruga, “Generation of long-range nondiffracting narrow light beams,” Appl. Opt. 36, 3762–3768 (1997).
[CrossRef] [PubMed]

T. Aruga, K. Araki, R. Hayashi, T. Iwabuchi, M. Takahashi, M. Nakamura, “Earth-to-geosynchronous satellite laser beam transmission,” Appl. Opt. 24, 53–56 (1985).
[CrossRef] [PubMed]

M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 71–80 (1996).
[CrossRef]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Buck, A. L.

Bufton, J. L.

Clifford, S. F.

S. F. Clifford, “Physical propaties of the atmosphere in relation to laser probing,” Opt. Quantum Electron. 8, 95–104 (1976).
[CrossRef]

Cox, A. J.

Davis, J. I.

Dibble, D. C.

Dowling, J. A.

Durnin, J.

J. Durnin, J. J. Miceli, H. J. Eberley, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Eberley, H. J.

J. Durnin, J. J. Miceli, H. J. Eberley, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Friberg, A. T.

Fried, D. L.

Fugate, R. Q.

See, for example, R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News 4, 14–19 (1993).

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Hardesty, R. M.

Hayashi, R.

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Höhn, D. H.

Iwabuchi, T.

Khmelevtsov, S. S.

S. S. Khmelevtsov, “Propagation of laser radiation in a turbulent atmosphere,” Appl. Opt. 12, 2412–2433 (1973).
[CrossRef]

Livingston, P. M.

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Majumdar, A. K.

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).

Menzies, R. T.

Miceli, J. J.

J. Durnin, J. J. Miceli, H. J. Eberley, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Minott, P. O.

Nakamura, M.

Roddier, N.

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[CrossRef]

Seidman, J. B.

Shikatani, M.

M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 71–80 (1996).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Takahashi, M.

Takahashi, T.

M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 71–80 (1996).
[CrossRef]

Toyoda, M.

M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 71–80 (1996).
[CrossRef]

Toyoshima, M.

M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 71–80 (1996).
[CrossRef]

Turunen, J.

Vasara, A.

Winick, K. A.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Zhao, Y.

Zuev, V. E.

V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere (Wiley, New York, 1974).

Appl. Opt. (12)

S. S. Khmelevtsov, “Propagation of laser radiation in a turbulent atmosphere,” Appl. Opt. 12, 2412–2433 (1973).
[CrossRef]

J. I. Davis, “Consideration of atmospheric turbulence in laser systems design,” Appl. Opt. 5, 139–147 (1966).
[CrossRef] [PubMed]

D. H. Höhn, “Effects of atmospheric turbulence on the transmission of a laser beam at 6328 Å. 2: Frequency spectra,” Appl. Opt. 5, 1433–1436 (1966).
[CrossRef] [PubMed]

A. L. Buck, “Effects of the atmosphere on laser beam propagation,” Appl. Opt. 6, 703–708 (1967).
[CrossRef] [PubMed]

J. L. Bufton, “Scintillation statistics measured in an earth–space–earth retroreflector link,” Appl. Opt. 16, 2654–2660 (1977).
[CrossRef] [PubMed]

T. Aruga, K. Araki, R. Hayashi, T. Iwabuchi, M. Takahashi, M. Nakamura, “Earth-to-geosynchronous satellite laser beam transmission,” Appl. Opt. 24, 53–56 (1985).
[CrossRef] [PubMed]

A. K. Majumdar, “Optical communication between aircraft in low-visibility atmosphere using diode lasers,” Appl. Opt. 24, 3659–3665 (1985).
[CrossRef] [PubMed]

K. A. Winick, “Atmospheric turbulence-induced signal fades on optical heterodyne communication links,” Appl. Opt. 25, 1817–1825 (1986).
[CrossRef] [PubMed]

R. T. Menzies, “Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit,” Appl. Opt. 25, 2546–2553 (1986).
[CrossRef] [PubMed]

Y. Zhao, R. M. Hardesty, “Technique for correcting effects of long CO2 laser pulses in aerosol-backscattered coherent lidar returns,” Appl. Opt. 27, 2719–2729 (1988).
[CrossRef] [PubMed]

T. Aruga, “Generation of long-range nondiffracting narrow light beams,” Appl. Opt. 36, 3762–3768 (1997).
[CrossRef] [PubMed]

J. Turunen, A. Vasara, A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3961 (1988).
[CrossRef] [PubMed]

IEEE Trans. Geosci. Remote Sensing (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[CrossRef]

Opt. Photon. News (1)

See, for example, R. Q. Fugate, “Laser beacon adaptive optics,” Opt. Photon. News 4, 14–19 (1993).

Opt. Quantum Electron. (1)

S. F. Clifford, “Physical propaties of the atmosphere in relation to laser probing,” Opt. Quantum Electron. 8, 95–104 (1976).
[CrossRef]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, H. J. Eberley, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Other (4)

M. Toyoda, M. Toyoshima, T. Takahashi, M. Shikatani, Y. Arimoto, K. Araki, T. Aruga, “Ground to ETS-VI narrow laser beam transmission,” in Free-Space Laser Communiation Technologies VIII, G. S. Mecherle, ed., Proc. SPIE2699, 71–80 (1996).
[CrossRef]

V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere (Wiley, New York, 1974).

E. J. McCartney, Optics of the Atmosphere (Wiley, New York, 1976).

V. I. Tatarskii, A. Ishimaru, V. U. Zavorotny, eds., Wave Propagation in Random Media (Scintillation), Vol. PM09 of SPIE Monographs and Handbooks (SPIE Press, Bellingham, Wash., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Generation of the LRNB by use of a distorted concave spherical wave front.

Fig. 2
Fig. 2

Example of a distorted concave spherical wave front with a 10-cm diameter. h(ρ) is the wave-front shape at radius ρ. The distortion is a result of spherical aberration. The dotted curve shows a normal spherical wave front when there is no aberration.

Fig. 3
Fig. 3

Intensity profiles of the light beam at different distances generated by the wave front of Fig. 2. The numbers 1, 2, 3, and 4 represent distances 0.5, 1.0, 1.5, and 2.0 km, respectively. The mainlobe corresponds to the LRNB.

Fig. 4
Fig. 4

Example of an actual LRNB’s pattern at a 500 m distance. A 0.53-µm wavelength Nd:YAG laser beam was transmitted from a 10-cm-diameter telescope in which the eyepiece has spherical aberration. The exposure time of the photograph is 4 ms.

Fig. 5
Fig. 5

Measured light intensity variations at a 500 m distance: (a) LRNB’s mainlobe, (a′) LRNB’s sidelobe, (b) collimated beam, (c) focused beam. For detection of these beams, a 2-cm-diameter aperture was used. Normalized intensity variation (an average intensity of 1.0) for 40 s with a 5-ms sampling period is shown for each case.

Tables (2)

Tables Icon

Table 1 Experimental Results of Light Intensity Variation at 500 m

Tables Icon

Table 2 Additional Experimental Results of the Collimated Beam

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I¯=1Ni Ii,
I2=1NiIi-I¯2,
M=I2I¯2,
σ=M.

Metrics