H. Laitinen, K. Lumme, “T-matrix method for general star-shaped particles: first results,” J. Quant. Spectrosc. Radiat. Transfer 60, 325–334 (1998).

[CrossRef]

Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2236 (1998).

[CrossRef]

J. Xu, J. G. Ma, Z. Chen, “Numerical validations of a nonlinear PML scheme for absorption of nonlinear electromagnetic waves,” IEEE Trans. Microwave Theory Tech. 46, 1752–1758 (1998).

[CrossRef]

P. Yang, K. N. Liou, “An efficient algorithm for truncating spatial domain in modeling lighting scattering by finite-difference technique,” J. Comput. Phys. 140, 346–369 (1998).

[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micrometer-sized airborne biological particles,” Aerosol. Sci. Technol. 28, 95–104 (1998).

[CrossRef]

G. Videen, W. B. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).

[CrossRef]

J. Xu, Z. Chen, J. Chuang, “Numerical implementation of PML in the TLM-based finite-difference time-domain grids,” IEEE Trans. Microwave Theory Tech. 45, 1263–1266 (1997).

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997).

[CrossRef]
[PubMed]

D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microwave Guided Wave Lett. 6, 97–99 (1996).

[CrossRef]

D. L. Mitchell, A. Macke, Y. G. Liu, “Modeling cirrus clouds. Part II: Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).

[CrossRef]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).

[CrossRef]

P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).

[CrossRef]

P. Yang, K. N. Liou, “Geometric-optics integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).

[CrossRef]
[PubMed]

A. Macke, J. Muller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).

[CrossRef]

M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles. A review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).

[CrossRef]

M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).

[CrossRef]
[PubMed]

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).

[CrossRef]

D. L. Mitchell, “How appropriate is Mie theory for predicting the radiative properties of atmospheric particles?” GEWEX News 7–11 (February1995).

Z. Sun, K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed phase clouds,” J. Climate 8, 1874–1888 (1995).

[CrossRef]

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).

[CrossRef]

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, T. Tflove, “Ultrawide-band absorbing boundary condition for termination of wave guide structures in FD-TD simulations,” IEEE Microwave Guided Wave Lett. 4, 344–346 (1994).

[CrossRef]

R. Holland, “Finite-difference time domain (FDTD) analysis of magnetic diffusion,” IEEE Trans. Electromagn. Compat. 36, 32–39 (1994).

[CrossRef]

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Wave Lett. 4, 268–270 (1994).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).

[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).

[CrossRef]

P. J. Flatau, G. L. Stephens, B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990).

[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).

[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).

[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).

[CrossRef]

A. Mugnai, W. J. Wiscombe, “Scattering from nonspherical Chebyshev particles,” Appl. Opt. 25, 1235–1244 (1986).

[CrossRef]

R. L. Higdon, “Absorbing boundary conditions for difference approximations to the multidimensional wave equation,” Math. Comput. 47, 437–459 (1986).

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).

[CrossRef]

Z. Liao, H. L. Wong, B. Yang, Y. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sin. 27, 1063–1076 (1984).

G. Mur, “Absorbing boundary condition for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).

[CrossRef]

A. Bayliss, E. Turkel, “Radiation boundary conditions for wavelike equations,” Commun. Pure Appl. Math. 33, 707–725 (1980).

[CrossRef]

D. E. Merewether, R. Fisher, F. W. Smith, “On implementing a numeric Huygen’s source in a finite difference program to illustrate scattering bodies,” IEEE Trans. Nucl. Sci. NS-27, 1829–1833 (1980).

[CrossRef]

A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975).

[CrossRef]

P. Barber, C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864–2872 (1975).

[CrossRef]
[PubMed]

S. Asano, G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).

[CrossRef]
[PubMed]

E. M. Purcell, C. P. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 196, 705–714 (1973).

[CrossRef]

B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651 (1971).

[CrossRef]

A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).

[CrossRef]

A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26, 138–147 (1969).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955).

[CrossRef]

Lord Rayleigh, “The dispersal of light by a dielectric cylinder,” Philos. Mag. 36, 365–376 (1918).

[CrossRef]

G. Mie, “Beigrade zur optik truber medien, speziell kolloidaler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).

[CrossRef]

W. P. Arnott, Y. Liu, J. Hallet, “Unreasonable effectiveness of mimicking measured infrared extinction by hexagonal ice crystals with Mie ice spheres,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 216–218.

A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).

[CrossRef]

A. Bayliss, E. Turkel, “Radiation boundary conditions for wavelike equations,” Commun. Pure Appl. Math. 33, 707–725 (1980).

[CrossRef]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975).

[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micrometer-sized airborne biological particles,” Aerosol. Sci. Technol. 28, 95–104 (1998).

[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micrometer-sized airborne biological particles,” Aerosol. Sci. Technol. 28, 95–104 (1998).

[CrossRef]

J. Xu, J. G. Ma, Z. Chen, “Numerical validations of a nonlinear PML scheme for absorption of nonlinear electromagnetic waves,” IEEE Trans. Microwave Theory Tech. 46, 1752–1758 (1998).

[CrossRef]

J. Xu, Z. Chen, J. Chuang, “Numerical implementation of PML in the TLM-based finite-difference time-domain grids,” IEEE Trans. Microwave Theory Tech. 45, 1263–1266 (1997).

J. Xu, Z. Chen, J. Chuang, “Numerical implementation of PML in the TLM-based finite-difference time-domain grids,” IEEE Trans. Microwave Theory Tech. 45, 1263–1266 (1997).

P. J. Flatau, G. L. Stephens, B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990).

[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).

[CrossRef]

B. T. Draine, “The discrete dipole approximation for studying light scattering by irregular targets,” in Proceedings of Conference on Light Scattering by Nonspherical Particles (American Meteorological Society, Boston, 1998).

B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651 (1971).

[CrossRef]

D. E. Merewether, R. Fisher, F. W. Smith, “On implementing a numeric Huygen’s source in a finite difference program to illustrate scattering bodies,” IEEE Trans. Nucl. Sci. NS-27, 1829–1833 (1980).

[CrossRef]

P. J. Flatau, G. L. Stephens, B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990).

[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).

[CrossRef]

Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2236 (1998).

[CrossRef]

G. Videen, W. B. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).

[CrossRef]

Q. Fu, W. B. Sun, P. Yang, “On modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths,” J. Atmos. Sci. (to be published).

W. P. Arnott, Y. Liu, J. Hallet, “Unreasonable effectiveness of mimicking measured infrared extinction by hexagonal ice crystals with Mie ice spheres,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 216–218.

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).

[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).

[CrossRef]

L. M. Miloshevich, A. J. Heymsfield, P. M. Norris, “Microphysical measurements in cirrus clouds from ice crystal replicator sonders launched during FIRE II,” in Proceedings of the 11th International Conference on Clouds and Precipitation (Elsevier, New York, 1992), pp. 525–528.

R. L. Higdon, “Absorbing boundary conditions for difference approximations to the multidimensional wave equation,” Math. Comput. 47, 437–459 (1986).

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micrometer-sized airborne biological particles,” Aerosol. Sci. Technol. 28, 95–104 (1998).

[CrossRef]

R. Holland, “Finite-difference time domain (FDTD) analysis of magnetic diffusion,” IEEE Trans. Electromagn. Compat. 36, 32–39 (1994).

[CrossRef]

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, T. Tflove, “Ultrawide-band absorbing boundary condition for termination of wave guide structures in FD-TD simulations,” IEEE Microwave Guided Wave Lett. 4, 344–346 (1994).

[CrossRef]

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Wave Lett. 4, 268–270 (1994).

[CrossRef]

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, T. Tflove, “Ultrawide-band absorbing boundary condition for termination of wave guide structures in FD-TD simulations,” IEEE Microwave Guided Wave Lett. 4, 344–346 (1994).

[CrossRef]

H. Laitinen, K. Lumme, “T-matrix method for general star-shaped particles: first results,” J. Quant. Spectrosc. Radiat. Transfer 60, 325–334 (1998).

[CrossRef]

Z. Liao, H. L. Wong, B. Yang, Y. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sin. 27, 1063–1076 (1984).

P. Yang, K. N. Liou, “An efficient algorithm for truncating spatial domain in modeling lighting scattering by finite-difference technique,” J. Comput. Phys. 140, 346–369 (1998).

[CrossRef]

P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).

[CrossRef]

P. Yang, K. N. Liou, “Geometric-optics integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).

[CrossRef]
[PubMed]

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).

[CrossRef]

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).

[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).

[CrossRef]

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).

[CrossRef]

W. P. Arnott, Y. Liu, J. Hallet, “Unreasonable effectiveness of mimicking measured infrared extinction by hexagonal ice crystals with Mie ice spheres,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 216–218.

D. L. Mitchell, A. Macke, Y. G. Liu, “Modeling cirrus clouds. Part II: Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).

[CrossRef]

H. Laitinen, K. Lumme, “T-matrix method for general star-shaped particles: first results,” J. Quant. Spectrosc. Radiat. Transfer 60, 325–334 (1998).

[CrossRef]

J. Xu, J. G. Ma, Z. Chen, “Numerical validations of a nonlinear PML scheme for absorption of nonlinear electromagnetic waves,” IEEE Trans. Microwave Theory Tech. 46, 1752–1758 (1998).

[CrossRef]

D. L. Mitchell, A. Macke, Y. G. Liu, “Modeling cirrus clouds. Part II: Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).

[CrossRef]

A. Macke, J. Muller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).

[CrossRef]

M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).

[CrossRef]
[PubMed]

M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles. A review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).

[CrossRef]

B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651 (1971).

[CrossRef]

D. E. Merewether, R. Fisher, F. W. Smith, “On implementing a numeric Huygen’s source in a finite difference program to illustrate scattering bodies,” IEEE Trans. Nucl. Sci. NS-27, 1829–1833 (1980).

[CrossRef]

G. Mie, “Beigrade zur optik truber medien, speziell kolloidaler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).

[CrossRef]

L. M. Miloshevich, A. J. Heymsfield, P. M. Norris, “Microphysical measurements in cirrus clouds from ice crystal replicator sonders launched during FIRE II,” in Proceedings of the 11th International Conference on Clouds and Precipitation (Elsevier, New York, 1992), pp. 525–528.

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).

[CrossRef]

M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles. A review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).

[CrossRef]

M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).

[CrossRef]
[PubMed]

D. L. Mitchell, A. Macke, Y. G. Liu, “Modeling cirrus clouds. Part II: Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).

[CrossRef]

D. L. Mitchell, “How appropriate is Mie theory for predicting the radiative properties of atmospheric particles?” GEWEX News 7–11 (February1995).

A. Macke, J. Muller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).

[CrossRef]

G. Mur, “Absorbing boundary condition for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).

[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micrometer-sized airborne biological particles,” Aerosol. Sci. Technol. 28, 95–104 (1998).

[CrossRef]

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).

[CrossRef]

L. M. Miloshevich, A. J. Heymsfield, P. M. Norris, “Microphysical measurements in cirrus clouds from ice crystal replicator sonders launched during FIRE II,” in Proceedings of the 11th International Conference on Clouds and Precipitation (Elsevier, New York, 1992), pp. 525–528.

A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26, 138–147 (1969).

[CrossRef]

E. M. Purcell, C. P. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 196, 705–714 (1973).

[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micrometer-sized airborne biological particles,” Aerosol. Sci. Technol. 28, 95–104 (1998).

[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).

[CrossRef]

E. M. Purcell, C. P. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 196, 705–714 (1973).

[CrossRef]

A. Macke, J. Muller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).

[CrossRef]

Lord Rayleigh, “The dispersal of light by a dielectric cylinder,” Philos. Mag. 36, 365–376 (1918).

[CrossRef]

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, T. Tflove, “Ultrawide-band absorbing boundary condition for termination of wave guide structures in FD-TD simulations,” IEEE Microwave Guided Wave Lett. 4, 344–346 (1994).

[CrossRef]

S. A. Schelkunoff, Electromagnetic Waves (Van Nostrand, New York, 1943).

Z. Sun, K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed phase clouds,” J. Climate 8, 1874–1888 (1995).

[CrossRef]

D. E. Merewether, R. Fisher, F. W. Smith, “On implementing a numeric Huygen’s source in a finite difference program to illustrate scattering bodies,” IEEE Trans. Nucl. Sci. NS-27, 1829–1833 (1980).

[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).

[CrossRef]

D. O. Starr, “A cirrus cloud experiment: intensive field observations planned for FIRE,” Bull. Am. Meteorol. Soc. 68, 119–124 (1987).

[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).

[CrossRef]

P. J. Flatau, G. L. Stephens, B. T. Draine, “Light scattering by rectangular solids in the discrete-dipole approximation: a new algorithm exploiting the block-toeplitz structure,” J. Opt. Soc. Am. A 7, 593–600 (1990).

[CrossRef]

D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microwave Guided Wave Lett. 6, 97–99 (1996).

[CrossRef]

Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2236 (1998).

[CrossRef]

G. Videen, W. B. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).

[CrossRef]

W. B. Sun, “An investigation of infrared radiative properties of cirrus clouds,” M.S. thesis (Dalhousie University, Halifax, N.S., 1997).

Q. Fu, W. B. Sun, P. Yang, “On modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths,” J. Atmos. Sci. (to be published).

Z. Sun, K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed phase clouds,” J. Climate 8, 1874–1888 (1995).

[CrossRef]

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Wave Lett. 4, 268–270 (1994).

[CrossRef]

A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975).

[CrossRef]

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).

[CrossRef]

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).

[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).

[CrossRef]

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, T. Tflove, “Ultrawide-band absorbing boundary condition for termination of wave guide structures in FD-TD simulations,” IEEE Microwave Guided Wave Lett. 4, 344–346 (1994).

[CrossRef]

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Wave Lett. 4, 268–270 (1994).

[CrossRef]

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, T. Tflove, “Ultrawide-band absorbing boundary condition for termination of wave guide structures in FD-TD simulations,” IEEE Microwave Guided Wave Lett. 4, 344–346 (1994).

[CrossRef]

M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles. A review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).

[CrossRef]

M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).

[CrossRef]
[PubMed]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).

[CrossRef]

A. Bayliss, E. Turkel, “Radiation boundary conditions for wavelike equations,” Commun. Pure Appl. Math. 33, 707–725 (1980).

[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).

[CrossRef]

G. Videen, W. B. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).

[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micrometer-sized airborne biological particles,” Aerosol. Sci. Technol. 28, 95–104 (1998).

[CrossRef]

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).

[CrossRef]

J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955).

[CrossRef]

Z. Liao, H. L. Wong, B. Yang, Y. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sin. 27, 1063–1076 (1984).

J. Xu, J. G. Ma, Z. Chen, “Numerical validations of a nonlinear PML scheme for absorption of nonlinear electromagnetic waves,” IEEE Trans. Microwave Theory Tech. 46, 1752–1758 (1998).

[CrossRef]

J. Xu, Z. Chen, J. Chuang, “Numerical implementation of PML in the TLM-based finite-difference time-domain grids,” IEEE Trans. Microwave Theory Tech. 45, 1263–1266 (1997).

Z. Liao, H. L. Wong, B. Yang, Y. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sin. 27, 1063–1076 (1984).

P. Yang, K. N. Liou, “An efficient algorithm for truncating spatial domain in modeling lighting scattering by finite-difference technique,” J. Comput. Phys. 140, 346–369 (1998).

[CrossRef]

Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2236 (1998).

[CrossRef]

P. Yang, K. N. Liou, “Geometric-optics integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).

[CrossRef]
[PubMed]

P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996).

[CrossRef]

Q. Fu, W. B. Sun, P. Yang, “On modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths,” J. Atmos. Sci. (to be published).

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

Z. Liao, H. L. Wong, B. Yang, Y. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sin. 27, 1063–1076 (1984).

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micrometer-sized airborne biological particles,” Aerosol. Sci. Technol. 28, 95–104 (1998).

[CrossRef]

G. Mie, “Beigrade zur optik truber medien, speziell kolloidaler metallosungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).

[CrossRef]

S. Asano, G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975).

[CrossRef]
[PubMed]

A. Mugnai, W. J. Wiscombe, “Scattering from nonspherical Chebyshev particles,” Appl. Opt. 25, 1235–1244 (1986).

[CrossRef]

M. I. Mishchenko, L. D. Travis, A. Macke, “Scattering of light by polydisperse, randomly oriented, finite circular cylinders,” Appl. Opt. 35, 4927–4940 (1996).

[CrossRef]
[PubMed]

P. Yang, K. N. Liou, “Geometric-optics integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996).

[CrossRef]
[PubMed]

P. Barber, C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864–2872 (1975).

[CrossRef]
[PubMed]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm,” Appl. Opt. 36, 2818–2824 (1997).

[CrossRef]
[PubMed]

G. N. Plass, G. W. Kattawa, “Radiative transfer in water and ice clouds in the visible and infrared region,” Appl. Opt. 10, 738–749 (1968).

[CrossRef]

E. M. Purcell, C. P. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 196, 705–714 (1973).

[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988).

[CrossRef]

K. N. Liou, Y. Takano, “Light scattering by nonspherical particles: remote sensing and climatic implications,” Atmos. Res. 31, 271–298 (1994).

[CrossRef]

D. O. Starr, “A cirrus cloud experiment: intensive field observations planned for FIRE,” Bull. Am. Meteorol. Soc. 68, 119–124 (1987).

[CrossRef]

J. R. Wait, “Scattering of a plane wave from a circular dielectric cylinder at oblique incidence,” Can. J. Phys. 33, 189–195 (1955).

[CrossRef]

A. Bayliss, E. Turkel, “Radiation boundary conditions for wavelike equations,” Commun. Pure Appl. Math. 33, 707–725 (1980).

[CrossRef]

D. L. Mitchell, “How appropriate is Mie theory for predicting the radiative properties of atmospheric particles?” GEWEX News 7–11 (February1995).

C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, T. Tflove, “Ultrawide-band absorbing boundary condition for termination of wave guide structures in FD-TD simulations,” IEEE Microwave Guided Wave Lett. 4, 344–346 (1994).

[CrossRef]

D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microwave Guided Wave Lett. 6, 97–99 (1996).

[CrossRef]

D. S. Katz, E. T. Thiele, A. Taflove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave Guided Wave Lett. 4, 268–270 (1994).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

R. Holland, “Finite-difference time domain (FDTD) analysis of magnetic diffusion,” IEEE Trans. Electromagn. Compat. 36, 32–39 (1994).

[CrossRef]

G. Mur, “Absorbing boundary condition for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981).

[CrossRef]

A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975).

[CrossRef]

J. Xu, Z. Chen, J. Chuang, “Numerical implementation of PML in the TLM-based finite-difference time-domain grids,” IEEE Trans. Microwave Theory Tech. 45, 1263–1266 (1997).

J. Xu, J. G. Ma, Z. Chen, “Numerical validations of a nonlinear PML scheme for absorption of nonlinear electromagnetic waves,” IEEE Trans. Microwave Theory Tech. 46, 1752–1758 (1998).

[CrossRef]

D. E. Merewether, R. Fisher, F. W. Smith, “On implementing a numeric Huygen’s source in a finite difference program to illustrate scattering bodies,” IEEE Trans. Nucl. Sci. NS-27, 1829–1833 (1980).

[CrossRef]

A. J. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content,” J. Atmos. Sci. 41, 846–855 (1984).

[CrossRef]

D. L. Mitchell, A. Macke, Y. G. Liu, “Modeling cirrus clouds. Part II: Treatment of radiative properties,” J. Atmos. Sci. 53, 2967–2988 (1996).

[CrossRef]

A. Ono, “The shape and riming properties of ice crystals in natural clouds,” J. Atmos. Sci. 26, 138–147 (1969).

[CrossRef]

A. H. Auer, D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27, 919–926 (1970).

[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).

[CrossRef]

A. Macke, J. Muller, E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996).

[CrossRef]

G. L. Stephens, S. C. Tsay, P. W. Stackhouse, P. J. Flatau, “The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback,” J. Atmos. Sci. 47, 1742–1753 (1990).

[CrossRef]

Y. Takano, K. N. Liou, P. Minnis, “The effects of small ice crystals on cirrus infrared radiative properties,” J. Atmos. Sci. 49, 1487–1493 (1992).

[CrossRef]

Q. Fu, P. Yang, W. B. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Climate 11, 2223–2236 (1998).

[CrossRef]

Z. Sun, K. P. Shine, “Parameterization of ice cloud radiative properties and its application to the potential climatic importance of mixed phase clouds,” J. Climate 8, 1874–1888 (1995).

[CrossRef]

P. Yang, K. N. Liou, “An efficient algorithm for truncating spatial domain in modeling lighting scattering by finite-difference technique,” J. Comput. Phys. 140, 346–369 (1998).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).

[CrossRef]

M. I. Mishchenko, L. D. Travis, D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles. A review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996).

[CrossRef]

H. Laitinen, K. Lumme, “T-matrix method for general star-shaped particles: first results,” J. Quant. Spectrosc. Radiat. Transfer 60, 325–334 (1998).

[CrossRef]

B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651 (1971).

[CrossRef]

R. L. Higdon, “Absorbing boundary conditions for difference approximations to the multidimensional wave equation,” Math. Comput. 47, 437–459 (1986).

K. N. Liou, “Influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986).

[CrossRef]

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).

[CrossRef]

G. Videen, W. B. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).

[CrossRef]

Lord Rayleigh, “The dispersal of light by a dielectric cylinder,” Philos. Mag. 36, 365–376 (1918).

[CrossRef]

Z. Liao, H. L. Wong, B. Yang, Y. Yuan, “A transmitting boundary for transient wave analyses,” Sci. Sin. 27, 1063–1076 (1984).

B. T. Draine, “The discrete dipole approximation for studying light scattering by irregular targets,” in Proceedings of Conference on Light Scattering by Nonspherical Particles (American Meteorological Society, Boston, 1998).

W. B. Sun, “An investigation of infrared radiative properties of cirrus clouds,” M.S. thesis (Dalhousie University, Halifax, N.S., 1997).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Q. Fu, W. B. Sun, P. Yang, “On modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths,” J. Atmos. Sci. (to be published).

L. M. Miloshevich, A. J. Heymsfield, P. M. Norris, “Microphysical measurements in cirrus clouds from ice crystal replicator sonders launched during FIRE II,” in Proceedings of the 11th International Conference on Clouds and Precipitation (Elsevier, New York, 1992), pp. 525–528.

S. A. Schelkunoff, Electromagnetic Waves (Van Nostrand, New York, 1943).

W. P. Arnott, Y. Liu, J. Hallet, “Unreasonable effectiveness of mimicking measured infrared extinction by hexagonal ice crystals with Mie ice spheres,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 216–218.