Abstract

Stationary and traveling waves of the states of optical polarization are considered in the framework of Jones vector formalism. The feasibility of revealing these waves in holographic and interference arrangements is substantiated and demonstrated.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Akhmanov, Yu. Ye. Dyakov, A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981) (in Russian).
  2. T. Tudor, “Polarization waves as observable phenomena,” J. Opt. Soc. Am. A. 14, 2013–2020 (1997).
    [CrossRef]
  3. J. M. Schurr, A. N. Naimushin, B. S. Fujimoto, “Measurement of the dynamic bending rigidity of DNA by a transient polarization grating method,” in Proceedings of the 7th International Conference on Laser Applications in Life Sciences (Slovak Technical University, Bratislava, Slovak Republic, 1998), p. PL-2.
  4. S. M. Rytov, Yu. A. Kravtsov, B. I. Tatarsky, Introduction to Statistical Radiophysics, Part II, Random Fields, (Nauka, Moscow, 1978) (in Russian).
  5. J. S. Nye, “Polarization effects in the waves: the role of disclination,” Proc. R. Soc. London Ser. A 387, 105–132 (1983).
    [CrossRef]
  6. T. Tudor, “Waves, amplitude waves, intensity waves,” J. Opt. (Paris) 22, 291–296 (1991).
    [CrossRef]
  7. T. Tudor, “Intensity waves in multifrequency optical fields,” Optik 100, 15–20 (1995).
  8. M. Franson, “Interference, diffraction et polarization,” in Handbuch der Physik, S. Flege, ed. (Springer-Verlag, Berlin, 1956), Vol. 24, Chap. CIII, pp. 419–421.
  9. W. A. Shurcliff, Polarized Light, (Harvard University, Cambridge, Mass., 1969), App. A, p. 245.

1997 (1)

T. Tudor, “Polarization waves as observable phenomena,” J. Opt. Soc. Am. A. 14, 2013–2020 (1997).
[CrossRef]

1995 (1)

T. Tudor, “Intensity waves in multifrequency optical fields,” Optik 100, 15–20 (1995).

1991 (1)

T. Tudor, “Waves, amplitude waves, intensity waves,” J. Opt. (Paris) 22, 291–296 (1991).
[CrossRef]

1983 (1)

J. S. Nye, “Polarization effects in the waves: the role of disclination,” Proc. R. Soc. London Ser. A 387, 105–132 (1983).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, Yu. Ye. Dyakov, A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981) (in Russian).

Chirkin, A. S.

S. A. Akhmanov, Yu. Ye. Dyakov, A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981) (in Russian).

Dyakov, Yu. Ye.

S. A. Akhmanov, Yu. Ye. Dyakov, A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981) (in Russian).

Franson, M.

M. Franson, “Interference, diffraction et polarization,” in Handbuch der Physik, S. Flege, ed. (Springer-Verlag, Berlin, 1956), Vol. 24, Chap. CIII, pp. 419–421.

Fujimoto, B. S.

J. M. Schurr, A. N. Naimushin, B. S. Fujimoto, “Measurement of the dynamic bending rigidity of DNA by a transient polarization grating method,” in Proceedings of the 7th International Conference on Laser Applications in Life Sciences (Slovak Technical University, Bratislava, Slovak Republic, 1998), p. PL-2.

Kravtsov, Yu. A.

S. M. Rytov, Yu. A. Kravtsov, B. I. Tatarsky, Introduction to Statistical Radiophysics, Part II, Random Fields, (Nauka, Moscow, 1978) (in Russian).

Naimushin, A. N.

J. M. Schurr, A. N. Naimushin, B. S. Fujimoto, “Measurement of the dynamic bending rigidity of DNA by a transient polarization grating method,” in Proceedings of the 7th International Conference on Laser Applications in Life Sciences (Slovak Technical University, Bratislava, Slovak Republic, 1998), p. PL-2.

Nye, J. S.

J. S. Nye, “Polarization effects in the waves: the role of disclination,” Proc. R. Soc. London Ser. A 387, 105–132 (1983).
[CrossRef]

Rytov, S. M.

S. M. Rytov, Yu. A. Kravtsov, B. I. Tatarsky, Introduction to Statistical Radiophysics, Part II, Random Fields, (Nauka, Moscow, 1978) (in Russian).

Schurr, J. M.

J. M. Schurr, A. N. Naimushin, B. S. Fujimoto, “Measurement of the dynamic bending rigidity of DNA by a transient polarization grating method,” in Proceedings of the 7th International Conference on Laser Applications in Life Sciences (Slovak Technical University, Bratislava, Slovak Republic, 1998), p. PL-2.

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light, (Harvard University, Cambridge, Mass., 1969), App. A, p. 245.

Tatarsky, B. I.

S. M. Rytov, Yu. A. Kravtsov, B. I. Tatarsky, Introduction to Statistical Radiophysics, Part II, Random Fields, (Nauka, Moscow, 1978) (in Russian).

Tudor, T.

T. Tudor, “Polarization waves as observable phenomena,” J. Opt. Soc. Am. A. 14, 2013–2020 (1997).
[CrossRef]

T. Tudor, “Intensity waves in multifrequency optical fields,” Optik 100, 15–20 (1995).

T. Tudor, “Waves, amplitude waves, intensity waves,” J. Opt. (Paris) 22, 291–296 (1991).
[CrossRef]

J. Opt. (Paris) (1)

T. Tudor, “Waves, amplitude waves, intensity waves,” J. Opt. (Paris) 22, 291–296 (1991).
[CrossRef]

J. Opt. Soc. Am. A. (1)

T. Tudor, “Polarization waves as observable phenomena,” J. Opt. Soc. Am. A. 14, 2013–2020 (1997).
[CrossRef]

Optik (1)

T. Tudor, “Intensity waves in multifrequency optical fields,” Optik 100, 15–20 (1995).

Proc. R. Soc. London Ser. A (1)

J. S. Nye, “Polarization effects in the waves: the role of disclination,” Proc. R. Soc. London Ser. A 387, 105–132 (1983).
[CrossRef]

Other (5)

S. A. Akhmanov, Yu. Ye. Dyakov, A. S. Chirkin, Introduction to Statistical Radiophysics and Optics (Nauka, Moscow, 1981) (in Russian).

J. M. Schurr, A. N. Naimushin, B. S. Fujimoto, “Measurement of the dynamic bending rigidity of DNA by a transient polarization grating method,” in Proceedings of the 7th International Conference on Laser Applications in Life Sciences (Slovak Technical University, Bratislava, Slovak Republic, 1998), p. PL-2.

S. M. Rytov, Yu. A. Kravtsov, B. I. Tatarsky, Introduction to Statistical Radiophysics, Part II, Random Fields, (Nauka, Moscow, 1978) (in Russian).

M. Franson, “Interference, diffraction et polarization,” in Handbuch der Physik, S. Flege, ed. (Springer-Verlag, Berlin, 1956), Vol. 24, Chap. CIII, pp. 419–421.

W. A. Shurcliff, Polarized Light, (Harvard University, Cambridge, Mass., 1969), App. A, p. 245.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Polarization modulation scheme. W1, W2 are obliquely incident waves, RW is a reference wave, and k1, k2 are wave vectors. (b) Field distribution at the plane of superposition: 1, distribution caused by superposition of components EX, EX; 2, distribution caused by superposition of components EZ, EZ; 3, resulting distribution. (c) Illustration of the spatial polarization modulation of a field. E′ and E″, electrical vector components of the superposing obliquely incident waves; E R , resulting electrical vector; I, schematic behavior of the field intensity between two points, A and B, where the oscillations of E R due to superposition of the waves W1, W2, and RW are out of phase by π.

Fig. 2
Fig. 2

Optical arrangement for the holographic experiment: BS1 and BS2, beam splitters; M1, M2, and M3, mirrors; P1, P2, and P3, polarizers; PR, prism; IL, immersion liquid; H, hologram.

Fig. 3
Fig. 3

Dependence of normalized intensity of the reconstructed signal against the azimuth of polarization of the reference wave.

Fig. 4
Fig. 4

(a) Voltage impressed on the piezoelectric ceramics; (b) form of the registered signal in the case in which the serrated voltage is impressed on the piezoelectric ceramics but the reference beam polarization controlled by P2 is orthogonal to the SOP’s of the superposing beams W1 and W2; (c) oscillograms of the signals obtained in the presence of the modulating signal at the piezoelectric ceramics and under the equal polarizations of the reference beam and the superposing waves W1 and W2 (both the reference wave and the wave that results from the superposition of waves W1 and W2 are of linear SOP, being in phase with each other); (d) oscillograms of the signals obtained in the presence of the modulating signal at piezoelectric ceramics and under the equal polarizations of the reference beam and the superposing waves W1 and W2 are of linear SOP, being out of phase by π.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

|Exr, t=E010expiωt-k1r,|Eyr, t=E001expiωt-k2r.
|Er, t=E0expi Δk2rexp-i Δk2rexpiωt-k¯r,
k¯=k1+k22,
|Π r=12expi Δk2rexp-iΔk2r,
Δk=k2-k1.
Δkr=const.
|Π=11.
|Π=expi π4exp-i π4i1,
|Exr, t=E010expiω1t-k1r,|Eyr, t=E001expiω2t-k2r,
|Er, t=E0expiω1t-k1rexpiω2t-k2r =E0exp-iΔω2 t-Δk2rexpiΔω2 t-Δk2rexpiω¯t-k¯r,
ω¯=ω1+ω22,  k¯=k1+k22,Δω=ω2-ω1,  Δk=k2-k1.
k¯=k1+k22
|Π r, t=exp-iΔω2 t-Δk2rexpiΔω2 t-Δk2r.
ΩPW=ω2-ω12
kPW=k2-k12.
VPW=Δω|Δk|.
|Π=11.
|Π=exp-i π4expi π4-i1.
|Π=1-1,
|Π=i1.
d=λ2 sinϕ/2,
d1=λ2 sinϕ/4,

Metrics