Abstract

Taking advantage of small aberrations, high efficiency, and compactness, we developed a new, to our knowledge, design procedure for a binary zone-plate array (BZPA) and applied it to a parallel joint transform correlator for the recognition of the human face. Pairs of reference and unknown images of faces are displayed on a liquid-crystal spatial light modulator (SLM), Fourier transformed by the BZPA, intensity recorded on an optically addressable SLM, and inversely Fourier transformed to obtain correlation signals. Consideration of the bandwidth allows the relations among the channel number, the numerical aperture of the zone plates, and the pattern size to be determined. Experimentally a five-channel parallel correlator was implemented and tested successfully with a 100-person database. The design and the fabrication of a 20-channel BZPA for phonetic character recognition are also included.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  2. C. S. Weaver, J. W. Goodman, “Technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966).
    [CrossRef] [PubMed]
  3. Y. Ichioka, T. Iwaki, K. Matsuoka, “Optical information processing and beyond,” Proc. IEEE 84, 694–719 (1996).
    [CrossRef]
  4. B. Javidi, J. Li, Q. Tang, “Optical implementation of neural networks for face recognition by use of the nonlinear joint transform correlations,” Appl. Opt. 34, 3950–3962 (1995).
    [CrossRef] [PubMed]
  5. S. Chang, S. A. Boothroyd, J. Chrostowski, “Partial rotation-invariant pattern matching and face recognition with a joint transform correlator,” Appl. Opt. 36, 2380–2387 (1997).
    [CrossRef] [PubMed]
  6. B. Javidi, “Optical spatial filtering for image encryption and security systems,” in Optical Pattern Recognition IX, D. P. Casasent, T. Chao, eds., Proc. SPIE3386, 14–18 (1998).
    [CrossRef]
  7. R. Thapliya, H. Koizumi, K. Kodate, T. Kamiya, “Parallel joint transform correlator applied to Devanagari script recognition,” Appl. Opt. 37, 5408–5415 (1998).
    [CrossRef]
  8. F. T. S. Yu, X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).
    [CrossRef]
  9. H. P. Herzig, Micro-Optics Elements, Systems and Applications (Taylor & Francis, London, 1997).
  10. F. T. S. Yu, S. Jutamulia, T. W. Lin, D. A. Gergory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1988).
    [CrossRef]
  11. M. Schmitz, O. Bryngdahl, “Rigorous concept for the design of diffractive microlenses with high numerical apertures,” J. Opt. Soc. Am. A 14, 901–906 (1997).
    [CrossRef]
  12. H. P. Herzig, “Design of refractive and diffractive micro-optics,” in Micro-Optics, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 1–31.
  13. U. Danzer, J. Schwider, “Two dimensional microoptical interconnects for a multiprocessor,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD2, pp. 99–101.
  14. Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
    [CrossRef]
  15. K. Kodate, E. Tokunaga, Y. Tatuno, J. L. Chen, T. Kamiya, “Efficient zone plate array accessor for optoelectronic integrated circuits: design and fabrication,” Appl. Opt. 29, 5115–5119 (1990).
    [CrossRef] [PubMed]
  16. K. Kodate, Y. Amadera, K. Ogawa, “Array pattern generation with multi-level Fresnel zone plate,” J. Jpn. Women’s Univ. Fac. Sci. 3, 9–17 (1995).
  17. W. Klaus, Y. Arimoto, K. Kodate, “High-performance Talbot array illuminators,” Appl. Opt. 37, 4357–4365 (1998).
    [CrossRef]
  18. K. Kodate, Y. Ohya, R. Thapliya, T. Kamiya, “Joint transform correlator for an optical face recognition system,” Opt. Rev. 3, 400–402 (1996).
    [CrossRef]
  19. K. Kodate, A. Hashimoto, Y. Takahashi, R. Thapliya, T. Kamiya, “Parallel facial recognition system based on optical joint transform correlator,” in Conference on Lasers and Electro-optics CLEO/Pacific Rim ’97 (Institute of Electrical and Electronics Engineers, New York, 1997), paper FK3, pp. 276–277.
    [CrossRef]
  20. A. Hashimoto, K. Koda, K. Kodate, R. Thapliya, T. Kamiya, “Binary zone plate array for parallel joint transform correlator system: design and evaluation,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD17, pp. 155–157.

1998 (2)

1997 (2)

1996 (2)

K. Kodate, Y. Ohya, R. Thapliya, T. Kamiya, “Joint transform correlator for an optical face recognition system,” Opt. Rev. 3, 400–402 (1996).
[CrossRef]

Y. Ichioka, T. Iwaki, K. Matsuoka, “Optical information processing and beyond,” Proc. IEEE 84, 694–719 (1996).
[CrossRef]

1995 (2)

K. Kodate, Y. Amadera, K. Ogawa, “Array pattern generation with multi-level Fresnel zone plate,” J. Jpn. Women’s Univ. Fac. Sci. 3, 9–17 (1995).

B. Javidi, J. Li, Q. Tang, “Optical implementation of neural networks for face recognition by use of the nonlinear joint transform correlations,” Appl. Opt. 34, 3950–3962 (1995).
[CrossRef] [PubMed]

1990 (1)

1988 (2)

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

F. T. S. Yu, S. Jutamulia, T. W. Lin, D. A. Gergory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1988).
[CrossRef]

1984 (1)

F. T. S. Yu, X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).
[CrossRef]

1966 (1)

1964 (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Amadera, Y.

K. Kodate, Y. Amadera, K. Ogawa, “Array pattern generation with multi-level Fresnel zone plate,” J. Jpn. Women’s Univ. Fac. Sci. 3, 9–17 (1995).

Arimoto, Y.

Boothroyd, S. A.

Bryngdahl, O.

Chang, S.

Chen, J. L.

Chrostowski, J.

Danzer, U.

U. Danzer, J. Schwider, “Two dimensional microoptical interconnects for a multiprocessor,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD2, pp. 99–101.

Gergory, D. A.

Goodman, J. W.

Hashimoto, A.

K. Kodate, A. Hashimoto, Y. Takahashi, R. Thapliya, T. Kamiya, “Parallel facial recognition system based on optical joint transform correlator,” in Conference on Lasers and Electro-optics CLEO/Pacific Rim ’97 (Institute of Electrical and Electronics Engineers, New York, 1997), paper FK3, pp. 276–277.
[CrossRef]

A. Hashimoto, K. Koda, K. Kodate, R. Thapliya, T. Kamiya, “Binary zone plate array for parallel joint transform correlator system: design and evaluation,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD17, pp. 155–157.

Herzig, H. P.

H. P. Herzig, Micro-Optics Elements, Systems and Applications (Taylor & Francis, London, 1997).

H. P. Herzig, “Design of refractive and diffractive micro-optics,” in Micro-Optics, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 1–31.

Ichioka, Y.

Y. Ichioka, T. Iwaki, K. Matsuoka, “Optical information processing and beyond,” Proc. IEEE 84, 694–719 (1996).
[CrossRef]

Iwaki, T.

Y. Ichioka, T. Iwaki, K. Matsuoka, “Optical information processing and beyond,” Proc. IEEE 84, 694–719 (1996).
[CrossRef]

Javidi, B.

B. Javidi, J. Li, Q. Tang, “Optical implementation of neural networks for face recognition by use of the nonlinear joint transform correlations,” Appl. Opt. 34, 3950–3962 (1995).
[CrossRef] [PubMed]

B. Javidi, “Optical spatial filtering for image encryption and security systems,” in Optical Pattern Recognition IX, D. P. Casasent, T. Chao, eds., Proc. SPIE3386, 14–18 (1998).
[CrossRef]

Jutamulia, S.

Kamiya, T.

R. Thapliya, H. Koizumi, K. Kodate, T. Kamiya, “Parallel joint transform correlator applied to Devanagari script recognition,” Appl. Opt. 37, 5408–5415 (1998).
[CrossRef]

K. Kodate, Y. Ohya, R. Thapliya, T. Kamiya, “Joint transform correlator for an optical face recognition system,” Opt. Rev. 3, 400–402 (1996).
[CrossRef]

K. Kodate, E. Tokunaga, Y. Tatuno, J. L. Chen, T. Kamiya, “Efficient zone plate array accessor for optoelectronic integrated circuits: design and fabrication,” Appl. Opt. 29, 5115–5119 (1990).
[CrossRef] [PubMed]

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

A. Hashimoto, K. Koda, K. Kodate, R. Thapliya, T. Kamiya, “Binary zone plate array for parallel joint transform correlator system: design and evaluation,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD17, pp. 155–157.

K. Kodate, A. Hashimoto, Y. Takahashi, R. Thapliya, T. Kamiya, “Parallel facial recognition system based on optical joint transform correlator,” in Conference on Lasers and Electro-optics CLEO/Pacific Rim ’97 (Institute of Electrical and Electronics Engineers, New York, 1997), paper FK3, pp. 276–277.
[CrossRef]

Kamiyama, H.

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

Klaus, W.

Koda, K.

A. Hashimoto, K. Koda, K. Kodate, R. Thapliya, T. Kamiya, “Binary zone plate array for parallel joint transform correlator system: design and evaluation,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD17, pp. 155–157.

Kodate, K.

R. Thapliya, H. Koizumi, K. Kodate, T. Kamiya, “Parallel joint transform correlator applied to Devanagari script recognition,” Appl. Opt. 37, 5408–5415 (1998).
[CrossRef]

W. Klaus, Y. Arimoto, K. Kodate, “High-performance Talbot array illuminators,” Appl. Opt. 37, 4357–4365 (1998).
[CrossRef]

K. Kodate, Y. Ohya, R. Thapliya, T. Kamiya, “Joint transform correlator for an optical face recognition system,” Opt. Rev. 3, 400–402 (1996).
[CrossRef]

K. Kodate, Y. Amadera, K. Ogawa, “Array pattern generation with multi-level Fresnel zone plate,” J. Jpn. Women’s Univ. Fac. Sci. 3, 9–17 (1995).

K. Kodate, E. Tokunaga, Y. Tatuno, J. L. Chen, T. Kamiya, “Efficient zone plate array accessor for optoelectronic integrated circuits: design and fabrication,” Appl. Opt. 29, 5115–5119 (1990).
[CrossRef] [PubMed]

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

A. Hashimoto, K. Koda, K. Kodate, R. Thapliya, T. Kamiya, “Binary zone plate array for parallel joint transform correlator system: design and evaluation,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD17, pp. 155–157.

K. Kodate, A. Hashimoto, Y. Takahashi, R. Thapliya, T. Kamiya, “Parallel facial recognition system based on optical joint transform correlator,” in Conference on Lasers and Electro-optics CLEO/Pacific Rim ’97 (Institute of Electrical and Electronics Engineers, New York, 1997), paper FK3, pp. 276–277.
[CrossRef]

Koizumi, H.

Li, J.

Lin, T. W.

Lu, X. J.

F. T. S. Yu, X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).
[CrossRef]

Matsuoka, K.

Y. Ichioka, T. Iwaki, K. Matsuoka, “Optical information processing and beyond,” Proc. IEEE 84, 694–719 (1996).
[CrossRef]

Ogawa, K.

K. Kodate, Y. Amadera, K. Ogawa, “Array pattern generation with multi-level Fresnel zone plate,” J. Jpn. Women’s Univ. Fac. Sci. 3, 9–17 (1995).

Ohya, Y.

K. Kodate, Y. Ohya, R. Thapliya, T. Kamiya, “Joint transform correlator for an optical face recognition system,” Opt. Rev. 3, 400–402 (1996).
[CrossRef]

Okada, Y.

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

Schmitz, M.

Schwider, J.

U. Danzer, J. Schwider, “Two dimensional microoptical interconnects for a multiprocessor,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD2, pp. 99–101.

Takahashi, Y.

K. Kodate, A. Hashimoto, Y. Takahashi, R. Thapliya, T. Kamiya, “Parallel facial recognition system based on optical joint transform correlator,” in Conference on Lasers and Electro-optics CLEO/Pacific Rim ’97 (Institute of Electrical and Electronics Engineers, New York, 1997), paper FK3, pp. 276–277.
[CrossRef]

Tang, Q.

Tatuno, Y.

Thapliya, R.

R. Thapliya, H. Koizumi, K. Kodate, T. Kamiya, “Parallel joint transform correlator applied to Devanagari script recognition,” Appl. Opt. 37, 5408–5415 (1998).
[CrossRef]

K. Kodate, Y. Ohya, R. Thapliya, T. Kamiya, “Joint transform correlator for an optical face recognition system,” Opt. Rev. 3, 400–402 (1996).
[CrossRef]

A. Hashimoto, K. Koda, K. Kodate, R. Thapliya, T. Kamiya, “Binary zone plate array for parallel joint transform correlator system: design and evaluation,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD17, pp. 155–157.

K. Kodate, A. Hashimoto, Y. Takahashi, R. Thapliya, T. Kamiya, “Parallel facial recognition system based on optical joint transform correlator,” in Conference on Lasers and Electro-optics CLEO/Pacific Rim ’97 (Institute of Electrical and Electronics Engineers, New York, 1997), paper FK3, pp. 276–277.
[CrossRef]

Tokunaga, E.

VanderLugt, A.

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Weaver, C. S.

Yu, F. T. S.

Appl. Opt. (7)

IEEE Trans. Inf. Theory (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

J. Jpn. Women’s Univ. Fac. Sci. (1)

K. Kodate, Y. Amadera, K. Ogawa, “Array pattern generation with multi-level Fresnel zone plate,” J. Jpn. Women’s Univ. Fac. Sci. 3, 9–17 (1995).

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. Okada, K. Kodate, H. Kamiyama, T. Kamiya, “Fiber-optic pulse delay using composite zone plates for very fast optoelectronics,” Jpn. J. Appl. Phys. 27, 1440–1444 (1988).
[CrossRef]

Opt. Commun. (1)

F. T. S. Yu, X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).
[CrossRef]

Opt. Rev. (1)

K. Kodate, Y. Ohya, R. Thapliya, T. Kamiya, “Joint transform correlator for an optical face recognition system,” Opt. Rev. 3, 400–402 (1996).
[CrossRef]

Proc. IEEE (1)

Y. Ichioka, T. Iwaki, K. Matsuoka, “Optical information processing and beyond,” Proc. IEEE 84, 694–719 (1996).
[CrossRef]

Other (6)

B. Javidi, “Optical spatial filtering for image encryption and security systems,” in Optical Pattern Recognition IX, D. P. Casasent, T. Chao, eds., Proc. SPIE3386, 14–18 (1998).
[CrossRef]

H. P. Herzig, “Design of refractive and diffractive micro-optics,” in Micro-Optics, H. P. Herzig, ed. (Taylor & Francis, London, 1997), pp. 1–31.

U. Danzer, J. Schwider, “Two dimensional microoptical interconnects for a multiprocessor,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD2, pp. 99–101.

K. Kodate, A. Hashimoto, Y. Takahashi, R. Thapliya, T. Kamiya, “Parallel facial recognition system based on optical joint transform correlator,” in Conference on Lasers and Electro-optics CLEO/Pacific Rim ’97 (Institute of Electrical and Electronics Engineers, New York, 1997), paper FK3, pp. 276–277.
[CrossRef]

A. Hashimoto, K. Koda, K. Kodate, R. Thapliya, T. Kamiya, “Binary zone plate array for parallel joint transform correlator system: design and evaluation,” in Diffractive Optics and Micro-Optics, Vol. 10 of OSA 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), paper DTuD17, pp. 155–157.

H. P. Herzig, Micro-Optics Elements, Systems and Applications (Taylor & Francis, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of a PJTC with a five-channel BZPA: M.i, mirrors; H.M.i, half-mirrors; P.i, polarizers; A.i, analyzers. The combination of a TNL-SLM with a polarizer–analyzer pair acts as an intensity-modulated encoder of pattern pairs, while the PAL-SLM records the array of intensity holograms. BZPA1 and BZPA2 act as Fourier transform lens arrays. Ref., reference.

Fig. 2
Fig. 2

(a) Experimental study of the facial pattern correlation-signal intensity as a function of the input pattern size. The input size is normalized by the standard size. The filled circles represent the autocorrelation signals; the open circles represent the cross correlation. (b) Standard-size [1.79 mm × 3.58 mm (horizontal × vertical)] facial pattern pair after binarization. The separation d between the patterns determines the spatial-frequency spectrum of the hologram, hence the position of the correlation peaks after inverse Fourier transformation.

Fig. 3
Fig. 3

(a) Twenty-channel BZPA layout. Irregular geometry is adopted so that the diffraction spots caused by the pixelation lattice do not overlap with the signal beams. (b) Atomic-force microscope view of an eight-level BZP. The height of each individual step is approximately 173 nm.

Fig. 4
Fig. 4

Experimental intensity distribution at the focal plane of the 20-channel BZPA when illuminated by a collimated beam. The uniformity of the peak height is within ±1.8%.

Fig. 5
Fig. 5

Database category of facial patterns. The left-hand box contains 100 reference images. Column one in the right-hand box shows 10 registered facial images (taken from the reference-image database). Column two in the right-hand box shows 10 unregistered facial images that are not contained within the reference database. The difference between the registered and the unregistered patterns is examined in Fig. 6.

Fig. 6
Fig. 6

(a) Flow chart for the postprocessing of data from the PJTC. (b) Example of correlation mapping of a registered (i = 1) and an unregistered (i = 102) image. (c) Comparison values C i for 10 registered (i = 1–10) and 10 unregistered (i = 101–110) facial images. Reg., registered; Unreg., unregistered.

Fig. 7
Fig. 7

(a) Four changes in the facial expression for code #1. (b) Dependence of the comparison values C i on the facial expressions.

Tables (2)

Tables Icon

Table 1 Specifications of Active Devices for a Real-Time JTC

Tables Icon

Table 2 Characteristics of Two Types of BZPA

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

rm=2mfλN+mλ/N21/2,
Ci=j=1NPijPi max-1N-1,

Metrics