Abstract

A path-reversed substrate-guided-wave holographic interconnection scheme is investigated for a wavelength-division demultiplexing application. Using a beveled edge of a waveguiding plate allows optical signals to be coupled into the waveguiding plate and then to be coupled out of the plate by a waveguide hologram. Theoretical analyses are given for dispersion, bandwidth, and recording parameters of various guided-wave holographic gratings. A device is fabricated with a 45° incident angle and a 45° diffraction angle by use of a 20-µm photopolymer film. The 3-dB bandwidth of the device is measured to be 20 nm. Four-channel wavelength demultiplexing is demonstrated at 796, 798, 800, and 802 nm with no cross talk observed. A one-to-five cascaded four-channel wavelength-division demultiplexer with ±5% energy uniformity under s polarization is also demonstrated to increase the user-sharing capacity. Twenty fan-out channels (5 × 4) are achieved experimentally.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
    [CrossRef] [PubMed]
  2. S. Reinhorn, Y. Amitai, A. A. Friesem, “Compact planar optical correlator,” Opt. Lett. 22, 925–927 (1997).
    [CrossRef] [PubMed]
  3. S. Reinhorn, S. Gorodeisky, A. A. Friesem, Y. Amitai, “Fourier transformation with a planar holographic doublet,” Opt. Lett. 20, 495–497 (1995).
    [CrossRef] [PubMed]
  4. J. Liu, C. Zhao, R. T. Chen, “Implementation of optical perfect shuffle with substrate-guided wave optical interconnects,” IEEE Photon. Technol. Lett. 9, 946–948 (1997).
    [CrossRef]
  5. J. Liu, C. Zhao, R. Lee, R. T. Chen, “Cross-link optimized cascaded volume hologram array with energy-equalized one-to-many surface-normal fan-outs,” Opt. Lett. 22, 1024–1026 (1997).
    [CrossRef] [PubMed]
  6. J. Liu, Z. Fu, R. T. Chen, “Polarization sensitivity of photopolymer-based volume holograms for one-to-many surface normal optical interconnects,” Opt. Eng. 37, 660–665 (1998).
    [CrossRef]
  7. J. Liu, R. T. Chen, “A two-dimensional dual-wavelength routing network with 1-to-10 cascaded fanouts,” IEEE Photon. Technol. Lett. 10, 238–240 (1997).
  8. M. M. Li, R. T. Chen, “Five-channel surface-normal wavelength-division demultiplexer using substrate-guided waves in conjunction with a polymer-based littrow hologram,” Opt. Lett. 20, 797–799 (1995).
    [CrossRef] [PubMed]
  9. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
    [CrossRef]
  10. H. Takahashi, S. Suzuki, K. Kato, I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990).
    [CrossRef]
  11. C. Dragon, C. H. Henry, I. P. Kaminow, R. C. Kistler, “Efficient multichannel integrated optics star coupler on silicon,” IEEE Photon. Technol. Lett. 1, 241–243 (1989).
    [CrossRef]
  12. C. Dragon, “An N × N optical multiplexer using a palnar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
    [CrossRef]
  13. C. Dragon, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
    [CrossRef]
  14. M. K. Smit, C. van Dam, “PHASAR-based WDM devices: principles, design and applications,” IEEE J. Select. Topics Quantum Electron. 2, 236–250 (1996).
    [CrossRef]
  15. K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  16. B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3, 66–68 (1978).
    [CrossRef] [PubMed]
  17. F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388–390 (1995).
    [CrossRef]
  18. I. Baumann, J. Seifert, W. Nowak, M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
    [CrossRef]
  19. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  20. G. W. Neudeck, J. Denton, J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, “A high speed Si photodiode by epitaxial lateral growth,” paper presented at the Fifty-sixth Annual Device Research Conference, Charlottesville, Va., 22–24 June 1998.
  21. C. Schow, J. Schaub, R. Li, J. Qi, J. C. Campbell, “A 1 Gb/s monolithically integrated silicon NMOS optical receiver,” IEEE Quantum Electron. (to be published).
  22. S. Hu, J. Ko, L. A. Coldren, “High-performance densely packed vertical-cavity photonic integrated emitter arrays for direct-coupled WDM applications,” IEEE Photon. Technol. Lett. 10, 766–768 (1998).
    [CrossRef]
  23. D. L. Huffaker, D. G. Deppe, “Multiwavelength, densely packed 2 × 2 vertical-cavity surface-emitting laser array fabricated using selective oxidation,” IEEE Photon. Technol. Lett. 7, 858–860 (1996).
    [CrossRef]
  24. S. Y. Hu, J. Ko, O. Sjolund, L. A. Coldren, “Optical crosstalk in monolithically integrated multiple wavelength vertical-cavity laser arrays for multimode WDM local area networks,” Electron. Lett. 34, 676–678 (1998).
    [CrossRef]
  25. Y. K. Tsai, Y. T. Huang, D. C. Su, “Multiband wavelength-division demultiplexing with a cascaded substrate-mode grating structure,” Appl. Opt. 34, 5582–5588 (1995).
    [CrossRef] [PubMed]
  26. W. Gambogi, K. Steijn, S. Mackara, T. Duzik, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
    [CrossRef]
  27. U. Rhee, H. J. Caulfield, C. S. Vikram, J. Shamir, “Dynamics of hologram recording in DuPont photopolymer,” Appl. Opt. 34, 846–853 (1995).
    [CrossRef] [PubMed]
  28. S. Piazzolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996).
    [CrossRef] [PubMed]
  29. H. J. Zhou, V. Morozov, J. Neff, “Characterization of DuPont photopolymers in infrared light for free-space optical interconnects,” Appl. Opt. 34, 7457–7459 (1995).
    [CrossRef] [PubMed]
  30. R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, 1990).
  31. J. E. Ludman, “Approximate bandwidth and diffraction efficiency in thick holograms,” Am. J. Phys. 50, 244–246 (1982).
    [CrossRef]
  32. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 13, 2909–2947 (1969).
    [CrossRef]
  33. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
    [CrossRef]
  34. J. Liu, R. T. Chen, “Substrate-guided-wave-based optical interconnects for multi-wavelength routing and distribution networks,” J. Lightwave Technol. 17, 354–361 (1999).
    [CrossRef]
  35. T. Nakaya, Y. Katoh, T. Kubota, M. Tabeda, “Diffraction efficiency of a grating coupler for an array illuminator,” Appl. Opt. 35, 3891–3898 (1996).
    [CrossRef] [PubMed]

1999 (1)

1998 (3)

S. Hu, J. Ko, L. A. Coldren, “High-performance densely packed vertical-cavity photonic integrated emitter arrays for direct-coupled WDM applications,” IEEE Photon. Technol. Lett. 10, 766–768 (1998).
[CrossRef]

S. Y. Hu, J. Ko, O. Sjolund, L. A. Coldren, “Optical crosstalk in monolithically integrated multiple wavelength vertical-cavity laser arrays for multimode WDM local area networks,” Electron. Lett. 34, 676–678 (1998).
[CrossRef]

J. Liu, Z. Fu, R. T. Chen, “Polarization sensitivity of photopolymer-based volume holograms for one-to-many surface normal optical interconnects,” Opt. Eng. 37, 660–665 (1998).
[CrossRef]

1997 (5)

J. Liu, R. T. Chen, “A two-dimensional dual-wavelength routing network with 1-to-10 cascaded fanouts,” IEEE Photon. Technol. Lett. 10, 238–240 (1997).

J. Liu, C. Zhao, R. T. Chen, “Implementation of optical perfect shuffle with substrate-guided wave optical interconnects,” IEEE Photon. Technol. Lett. 9, 946–948 (1997).
[CrossRef]

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

S. Reinhorn, Y. Amitai, A. A. Friesem, “Compact planar optical correlator,” Opt. Lett. 22, 925–927 (1997).
[CrossRef] [PubMed]

J. Liu, C. Zhao, R. Lee, R. T. Chen, “Cross-link optimized cascaded volume hologram array with energy-equalized one-to-many surface-normal fan-outs,” Opt. Lett. 22, 1024–1026 (1997).
[CrossRef] [PubMed]

1996 (6)

S. Piazzolla, B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996).
[CrossRef] [PubMed]

A. Pu, D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389–2398 (1996).
[CrossRef] [PubMed]

T. Nakaya, Y. Katoh, T. Kubota, M. Tabeda, “Diffraction efficiency of a grating coupler for an array illuminator,” Appl. Opt. 35, 3891–3898 (1996).
[CrossRef] [PubMed]

M. K. Smit, C. van Dam, “PHASAR-based WDM devices: principles, design and applications,” IEEE J. Select. Topics Quantum Electron. 2, 236–250 (1996).
[CrossRef]

D. L. Huffaker, D. G. Deppe, “Multiwavelength, densely packed 2 × 2 vertical-cavity surface-emitting laser array fabricated using selective oxidation,” IEEE Photon. Technol. Lett. 7, 858–860 (1996).
[CrossRef]

I. Baumann, J. Seifert, W. Nowak, M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

1995 (6)

1991 (2)

C. Dragon, “An N × N optical multiplexer using a palnar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
[CrossRef]

C. Dragon, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990).
[CrossRef]

1989 (1)

C. Dragon, C. H. Henry, I. P. Kaminow, R. C. Kistler, “Efficient multichannel integrated optics star coupler on silicon,” IEEE Photon. Technol. Lett. 1, 241–243 (1989).
[CrossRef]

1988 (1)

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[CrossRef]

1985 (1)

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

1982 (1)

J. E. Ludman, “Approximate bandwidth and diffraction efficiency in thick holograms,” Am. J. Phys. 50, 244–246 (1982).
[CrossRef]

1978 (2)

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3, 66–68 (1978).
[CrossRef] [PubMed]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 13, 2909–2947 (1969).
[CrossRef]

Albert, J.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388–390 (1995).
[CrossRef]

Amitai, Y.

Baumann, I.

I. Baumann, J. Seifert, W. Nowak, M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

Bilodeau, F.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388–390 (1995).
[CrossRef]

Campbell, J. C.

C. Schow, J. Schaub, R. Li, J. Qi, J. C. Campbell, “A 1 Gb/s monolithically integrated silicon NMOS optical receiver,” IEEE Quantum Electron. (to be published).

G. W. Neudeck, J. Denton, J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, “A high speed Si photodiode by epitaxial lateral growth,” paper presented at the Fifty-sixth Annual Device Research Conference, Charlottesville, Va., 22–24 June 1998.

Caulfield, H. J.

Chen, R. T.

J. Liu, R. T. Chen, “Substrate-guided-wave-based optical interconnects for multi-wavelength routing and distribution networks,” J. Lightwave Technol. 17, 354–361 (1999).
[CrossRef]

J. Liu, Z. Fu, R. T. Chen, “Polarization sensitivity of photopolymer-based volume holograms for one-to-many surface normal optical interconnects,” Opt. Eng. 37, 660–665 (1998).
[CrossRef]

J. Liu, C. Zhao, R. Lee, R. T. Chen, “Cross-link optimized cascaded volume hologram array with energy-equalized one-to-many surface-normal fan-outs,” Opt. Lett. 22, 1024–1026 (1997).
[CrossRef] [PubMed]

J. Liu, C. Zhao, R. T. Chen, “Implementation of optical perfect shuffle with substrate-guided wave optical interconnects,” IEEE Photon. Technol. Lett. 9, 946–948 (1997).
[CrossRef]

J. Liu, R. T. Chen, “A two-dimensional dual-wavelength routing network with 1-to-10 cascaded fanouts,” IEEE Photon. Technol. Lett. 10, 238–240 (1997).

M. M. Li, R. T. Chen, “Five-channel surface-normal wavelength-division demultiplexer using substrate-guided waves in conjunction with a polymer-based littrow hologram,” Opt. Lett. 20, 797–799 (1995).
[CrossRef] [PubMed]

Coldren, L. A.

S. Hu, J. Ko, L. A. Coldren, “High-performance densely packed vertical-cavity photonic integrated emitter arrays for direct-coupled WDM applications,” IEEE Photon. Technol. Lett. 10, 766–768 (1998).
[CrossRef]

S. Y. Hu, J. Ko, O. Sjolund, L. A. Coldren, “Optical crosstalk in monolithically integrated multiple wavelength vertical-cavity laser arrays for multimode WDM local area networks,” Electron. Lett. 34, 676–678 (1998).
[CrossRef]

Denton, J.

G. W. Neudeck, J. Denton, J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, “A high speed Si photodiode by epitaxial lateral growth,” paper presented at the Fifty-sixth Annual Device Research Conference, Charlottesville, Va., 22–24 June 1998.

Deppe, D. G.

D. L. Huffaker, D. G. Deppe, “Multiwavelength, densely packed 2 × 2 vertical-cavity surface-emitting laser array fabricated using selective oxidation,” IEEE Photon. Technol. Lett. 7, 858–860 (1996).
[CrossRef]

Dragon, C.

C. Dragon, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

C. Dragon, “An N × N optical multiplexer using a palnar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
[CrossRef]

C. Dragon, C. H. Henry, I. P. Kaminow, R. C. Kistler, “Efficient multichannel integrated optics star coupler on silicon,” IEEE Photon. Technol. Lett. 1, 241–243 (1989).
[CrossRef]

Duzik, T.

W. Gambogi, K. Steijn, S. Mackara, T. Duzik, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Edwards, C. A.

C. Dragon, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

Friesem, A. A.

Fu, Z.

J. Liu, Z. Fu, R. T. Chen, “Polarization sensitivity of photopolymer-based volume holograms for one-to-many surface normal optical interconnects,” Opt. Eng. 37, 660–665 (1998).
[CrossRef]

Fujii, Y.

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3, 66–68 (1978).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Gambogi, W.

W. Gambogi, K. Steijn, S. Mackara, T. Duzik, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Gorodeisky, S.

Hamzavy, B.

W. Gambogi, K. Steijn, S. Mackara, T. Duzik, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Henry, C. H.

C. Dragon, C. H. Henry, I. P. Kaminow, R. C. Kistler, “Efficient multichannel integrated optics star coupler on silicon,” IEEE Photon. Technol. Lett. 1, 241–243 (1989).
[CrossRef]

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388–390 (1995).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3, 66–68 (1978).
[CrossRef] [PubMed]

Hu, S.

S. Hu, J. Ko, L. A. Coldren, “High-performance densely packed vertical-cavity photonic integrated emitter arrays for direct-coupled WDM applications,” IEEE Photon. Technol. Lett. 10, 766–768 (1998).
[CrossRef]

Hu, S. Y.

S. Y. Hu, J. Ko, O. Sjolund, L. A. Coldren, “Optical crosstalk in monolithically integrated multiple wavelength vertical-cavity laser arrays for multimode WDM local area networks,” Electron. Lett. 34, 676–678 (1998).
[CrossRef]

Huang, Y. T.

Huffaker, D. L.

D. L. Huffaker, D. G. Deppe, “Multiwavelength, densely packed 2 × 2 vertical-cavity surface-emitting laser array fabricated using selective oxidation,” IEEE Photon. Technol. Lett. 7, 858–860 (1996).
[CrossRef]

Jenkins, B. K.

Johnson, D. C.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388–390 (1995).
[CrossRef]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3, 66–68 (1978).
[CrossRef] [PubMed]

Kaminow, I. P.

C. Dragon, C. H. Henry, I. P. Kaminow, R. C. Kistler, “Efficient multichannel integrated optics star coupler on silicon,” IEEE Photon. Technol. Lett. 1, 241–243 (1989).
[CrossRef]

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990).
[CrossRef]

Katoh, Y.

Kawasaki, B. S.

B. S. Kawasaki, K. O. Hill, D. C. Johnson, Y. Fujii, “Narrow-band Bragg reflectors in optical fibers,” Opt. Lett. 3, 66–68 (1978).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kelly, J.

W. Gambogi, K. Steijn, S. Mackara, T. Duzik, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Kistler, R. C.

C. Dragon, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

C. Dragon, C. H. Henry, I. P. Kaminow, R. C. Kistler, “Efficient multichannel integrated optics star coupler on silicon,” IEEE Photon. Technol. Lett. 1, 241–243 (1989).
[CrossRef]

Ko, J.

S. Hu, J. Ko, L. A. Coldren, “High-performance densely packed vertical-cavity photonic integrated emitter arrays for direct-coupled WDM applications,” IEEE Photon. Technol. Lett. 10, 766–768 (1998).
[CrossRef]

S. Y. Hu, J. Ko, O. Sjolund, L. A. Coldren, “Optical crosstalk in monolithically integrated multiple wavelength vertical-cavity laser arrays for multimode WDM local area networks,” Electron. Lett. 34, 676–678 (1998).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 13, 2909–2947 (1969).
[CrossRef]

Kubota, T.

Lee, R.

Li, M. M.

Li, R.

C. Schow, J. Schaub, R. Li, J. Qi, J. C. Campbell, “A 1 Gb/s monolithically integrated silicon NMOS optical receiver,” IEEE Quantum Electron. (to be published).

G. W. Neudeck, J. Denton, J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, “A high speed Si photodiode by epitaxial lateral growth,” paper presented at the Fifty-sixth Annual Device Research Conference, Charlottesville, Va., 22–24 June 1998.

Liu, J.

J. Liu, R. T. Chen, “Substrate-guided-wave-based optical interconnects for multi-wavelength routing and distribution networks,” J. Lightwave Technol. 17, 354–361 (1999).
[CrossRef]

J. Liu, Z. Fu, R. T. Chen, “Polarization sensitivity of photopolymer-based volume holograms for one-to-many surface normal optical interconnects,” Opt. Eng. 37, 660–665 (1998).
[CrossRef]

J. Liu, C. Zhao, R. Lee, R. T. Chen, “Cross-link optimized cascaded volume hologram array with energy-equalized one-to-many surface-normal fan-outs,” Opt. Lett. 22, 1024–1026 (1997).
[CrossRef] [PubMed]

J. Liu, R. T. Chen, “A two-dimensional dual-wavelength routing network with 1-to-10 cascaded fanouts,” IEEE Photon. Technol. Lett. 10, 238–240 (1997).

J. Liu, C. Zhao, R. T. Chen, “Implementation of optical perfect shuffle with substrate-guided wave optical interconnects,” IEEE Photon. Technol. Lett. 9, 946–948 (1997).
[CrossRef]

Ludman, J. E.

J. E. Ludman, “Approximate bandwidth and diffraction efficiency in thick holograms,” Am. J. Phys. 50, 244–246 (1982).
[CrossRef]

Mackara, S.

W. Gambogi, K. Steijn, S. Mackara, T. Duzik, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Malo, B.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388–390 (1995).
[CrossRef]

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Moharam, M. G.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Morozov, V.

Nakaya, T.

Neff, J.

Neudeck, G. W.

G. W. Neudeck, J. Denton, J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, “A high speed Si photodiode by epitaxial lateral growth,” paper presented at the Fifty-sixth Annual Device Research Conference, Charlottesville, Va., 22–24 June 1998.

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990).
[CrossRef]

Nowak, W.

I. Baumann, J. Seifert, W. Nowak, M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

Piazzolla, S.

Psaltis, D.

Pu, A.

Qi, J.

C. Schow, J. Schaub, R. Li, J. Qi, J. C. Campbell, “A 1 Gb/s monolithically integrated silicon NMOS optical receiver,” IEEE Quantum Electron. (to be published).

Reinhorn, S.

Rhee, U.

Sauer, M.

I. Baumann, J. Seifert, W. Nowak, M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

Schaub, J.

C. Schow, J. Schaub, R. Li, J. Qi, J. C. Campbell, “A 1 Gb/s monolithically integrated silicon NMOS optical receiver,” IEEE Quantum Electron. (to be published).

Schaub, J. D.

G. W. Neudeck, J. Denton, J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, “A high speed Si photodiode by epitaxial lateral growth,” paper presented at the Fifty-sixth Annual Device Research Conference, Charlottesville, Va., 22–24 June 1998.

Schow, C.

C. Schow, J. Schaub, R. Li, J. Qi, J. C. Campbell, “A 1 Gb/s monolithically integrated silicon NMOS optical receiver,” IEEE Quantum Electron. (to be published).

Schow, C. L.

G. W. Neudeck, J. Denton, J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, “A high speed Si photodiode by epitaxial lateral growth,” paper presented at the Fifty-sixth Annual Device Research Conference, Charlottesville, Va., 22–24 June 1998.

Seifert, J.

I. Baumann, J. Seifert, W. Nowak, M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

Shamir, J.

Sjolund, O.

S. Y. Hu, J. Ko, O. Sjolund, L. A. Coldren, “Optical crosstalk in monolithically integrated multiple wavelength vertical-cavity laser arrays for multimode WDM local area networks,” Electron. Lett. 34, 676–678 (1998).
[CrossRef]

Smit, M. K.

M. K. Smit, C. van Dam, “PHASAR-based WDM devices: principles, design and applications,” IEEE J. Select. Topics Quantum Electron. 2, 236–250 (1996).
[CrossRef]

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[CrossRef]

Steijn, K.

W. Gambogi, K. Steijn, S. Mackara, T. Duzik, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Su, D. C.

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, 1990).

Tabeda, M.

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990).
[CrossRef]

Theriault, S.

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388–390 (1995).
[CrossRef]

Tsai, Y. K.

van Dam, C.

M. K. Smit, C. van Dam, “PHASAR-based WDM devices: principles, design and applications,” IEEE J. Select. Topics Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Vikram, C. S.

Zhao, C.

J. Liu, C. Zhao, R. Lee, R. T. Chen, “Cross-link optimized cascaded volume hologram array with energy-equalized one-to-many surface-normal fan-outs,” Opt. Lett. 22, 1024–1026 (1997).
[CrossRef] [PubMed]

J. Liu, C. Zhao, R. T. Chen, “Implementation of optical perfect shuffle with substrate-guided wave optical interconnects,” IEEE Photon. Technol. Lett. 9, 946–948 (1997).
[CrossRef]

Zhou, H. J.

Am. J. Phys. (1)

J. E. Ludman, “Approximate bandwidth and diffraction efficiency in thick holograms,” Am. J. Phys. 50, 244–246 (1982).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photo-sensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Bell Sys. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 13, 2909–2947 (1969).
[CrossRef]

Electron. Lett. (3)

S. Y. Hu, J. Ko, O. Sjolund, L. A. Coldren, “Optical crosstalk in monolithically integrated multiple wavelength vertical-cavity laser arrays for multimode WDM local area networks,” Electron. Lett. 34, 676–678 (1998).
[CrossRef]

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[CrossRef]

H. Takahashi, S. Suzuki, K. Kato, I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26, 87–88 (1990).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

M. K. Smit, C. van Dam, “PHASAR-based WDM devices: principles, design and applications,” IEEE J. Select. Topics Quantum Electron. 2, 236–250 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (9)

C. Dragon, C. H. Henry, I. P. Kaminow, R. C. Kistler, “Efficient multichannel integrated optics star coupler on silicon,” IEEE Photon. Technol. Lett. 1, 241–243 (1989).
[CrossRef]

C. Dragon, “An N × N optical multiplexer using a palnar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
[CrossRef]

C. Dragon, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

F. Bilodeau, D. C. Johnson, S. Theriault, B. Malo, J. Albert, K. O. Hill, “An all-fiber dense-wavelength-division multiplexer/demultiplexer using photoimprinted Bragg gratings,” IEEE Photon. Technol. Lett. 7, 388–390 (1995).
[CrossRef]

I. Baumann, J. Seifert, W. Nowak, M. Sauer, “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8, 1331–1333 (1996).
[CrossRef]

J. Liu, C. Zhao, R. T. Chen, “Implementation of optical perfect shuffle with substrate-guided wave optical interconnects,” IEEE Photon. Technol. Lett. 9, 946–948 (1997).
[CrossRef]

S. Hu, J. Ko, L. A. Coldren, “High-performance densely packed vertical-cavity photonic integrated emitter arrays for direct-coupled WDM applications,” IEEE Photon. Technol. Lett. 10, 766–768 (1998).
[CrossRef]

D. L. Huffaker, D. G. Deppe, “Multiwavelength, densely packed 2 × 2 vertical-cavity surface-emitting laser array fabricated using selective oxidation,” IEEE Photon. Technol. Lett. 7, 858–860 (1996).
[CrossRef]

J. Liu, R. T. Chen, “A two-dimensional dual-wavelength routing network with 1-to-10 cascaded fanouts,” IEEE Photon. Technol. Lett. 10, 238–240 (1997).

J. Lightwave Technol. (2)

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

J. Liu, R. T. Chen, “Substrate-guided-wave-based optical interconnects for multi-wavelength routing and distribution networks,” J. Lightwave Technol. 17, 354–361 (1999).
[CrossRef]

Opt. Eng. (1)

J. Liu, Z. Fu, R. T. Chen, “Polarization sensitivity of photopolymer-based volume holograms for one-to-many surface normal optical interconnects,” Opt. Eng. 37, 660–665 (1998).
[CrossRef]

Opt. Lett. (6)

Proc. IEEE (1)

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Other (4)

W. Gambogi, K. Steijn, S. Mackara, T. Duzik, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

R. R. A. Syms, Practical Volume Holography (Clarendon, Oxford, 1990).

G. W. Neudeck, J. Denton, J. D. Schaub, R. Li, C. L. Schow, J. C. Campbell, “A high speed Si photodiode by epitaxial lateral growth,” paper presented at the Fifty-sixth Annual Device Research Conference, Charlottesville, Va., 22–24 June 1998.

C. Schow, J. Schaub, R. Li, J. Qi, J. C. Campbell, “A 1 Gb/s monolithically integrated silicon NMOS optical receiver,” IEEE Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Path-reversed substrate-guided wave optical interconnection: (a) structure, (b) guided-wave holographic grating, (c) phase-matching condition for the recording and the reconstruction of the grating.

Fig. 2
Fig. 2

(a) Dispersion as calculated with Eq. (2) and (b) bandwidth calculated with Eq. (5).

Fig. 3
Fig. 3

Conceptual interpretation of forward and backward diffraction by rigorous coupled-wave analysis. Regions 1, 2, and 3 refer to the waveguiding plate, the grating, and air, respectively, as shown in Fig. 1; k1, k2, and k3 are the amplitudes of the three wave vectors in these three media (semicircles with these radii are shown in regions 1 and 3). The wave vectors σ i of the decomposed inhomogeneous plane waves in region 2 are given by the vector Floquet condition. The allowed wave vectors in regions 1 and 3 must be phase matched to the boundary components (along the Y direction) of these decomposed wave vectors. The horizontal dashed lines show such restrictions.

Fig. 4
Fig. 4

Experimental results (circles) and theoretical expectations (curve) of the angular deviation as a function of the wavelength change at a center wavelength of 800 nm.

Fig. 5
Fig. 5

Measured diffraction efficiency as a function of the wavelength change at a center wavelength of 800 nm under an s-polarization (s-pol) wave and a p-polarization (p-pol) wave for the WDDM.

Fig. 6
Fig. 6

CCD image of the light spots for the WDDM operating at 796, 798, 800, and 802 nm.

Fig. 7
Fig. 7

Path-reversed substrate-guided wave optical interconnection with multiple-fan-outs for WDDM application.

Fig. 8
Fig. 8

Experimental results of a one-to-five fan-out WDDM operating at a center wavelength of 800 nm: (a) CCD image and (b) three-dimensional intensity profile.

Tables (1)

Tables Icon

Table 1 Parameters for Four Guided-Wave Holographic Gratings

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Λysin θ2+sin θ2=mλ/n,  m=0, ±1, ±2,,
dθdiff/dλ=sin ϕ/Λ cos θdiff=nsin θ2+sin θ2/λ cos θdiff.
ϕ=π/2+θ2-θ2/2,
Λ=λ/2n sinθ2+θ2)/2,
Δλλ=Λ cos θ2 sin ϕd sin θ2,
ψ1=π2-ϕ-β2,
ψ2=ϕ+β2-π2,
β=2 sin-1nλcnλsinθ2+θ22,

Metrics