Abstract

A novel, to our knowledge, integrated wavelength-division multiplexing–passive optical net demultiplexer that uses an arrayed-waveguide grating and diffractive optical elements is presented. The demultiplexer is used to distribute 1.3-µm wavelength signals and to multiplex an eight-channel wavelength-division multiplexer spectrum at a 1.55-µm wavelength. The device shows high functionality and good optical performance. The measured cross talk was less than -21 dB, and the 3-dB bandwidth was determined to be 97 GHz, which is close to the theoretical value of 93 GHz. Average losses of 4.5 and 8 dB were measured for the 1.3- and the 1.55-µm signals, respectively.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180–2194 (1977).
    [CrossRef] [PubMed]
  2. N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.001–250 nm,” IEEE J. Select. Areas Commun. 8, 1120–1126 (1990).
    [CrossRef]
  3. E. Pawlowski, “Diffractive optical elements: fabrication and measurement of wavelength division demultiplexer,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 158–164 (1995).
  4. K. W. Cheung, D. A. Smith, J. E. Baran, B. L. Heffner, “Multiple channel operation of an integrated acousto-optic tunable filter,” Electron. Lett. 25, 375–376 (1989).
    [CrossRef]
  5. K. Sasayama, M. Okuno, K. Habara, “Coherent optical transversal filter using silica-based waveguides for high speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
    [CrossRef]
  6. E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
    [CrossRef]
  7. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
    [CrossRef]
  8. C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
    [CrossRef]
  9. K. Okamoto, K. Moriwaki, S. Suzuki, “Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon,” Electron. Lett. 31, 184–185 (1995).
    [CrossRef]
  10. U. Hilbk, Th. Hermes, J. Saniter, F.-J. Westphal, “High capacity WDM overlay on a passive optical network,” Electron. Lett. 32, 2162–2163 (1996).
    [CrossRef]
  11. Y. P. Li, L. G. Cohen, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, 15–19 September 1996, Oslo, Norway (NEXUS Media Ltd., Oslo, Norway, 1996), paper TuC.3.4, pp. 123–126.
  12. G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
    [CrossRef]
  13. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
    [CrossRef]
  14. E. Pawlowski, H. Engel, “Fabrication of multilevel diffractive optical elements with a single amplitude/phase mask,” Pure Appl. Opt. 6, 655–662 (1997).
    [CrossRef]
  15. J. V. Roey, J. van der Donk, P. E. Lagasse, “Beam propagation: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1983).
    [CrossRef]
  16. D. Yevick, “A guide to electric field propagation techniques for guided-wave optics,” Opt. Quantum Electron. 26, 185–197 (1994).
    [CrossRef]
  17. J. C. Chen, S. Jüngling, “Computation of high order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, 199–205 (1994).
    [CrossRef]
  18. A. Yariv, “Coupled-mode theory for guide-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
    [CrossRef]
  19. M. Yamada, K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matris approach,” Appl. Opt. 26, 3474–3478 (1987).
    [CrossRef] [PubMed]
  20. R. Petit, Electromagnetic Theory of Gratings (Springer Verlag, Berlin, 1980).
    [CrossRef]
  21. M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2–TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
    [CrossRef]
  22. M. D. Levenson, N. D. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 12, 1828–1836 (1982).
    [CrossRef]
  23. T. Terasawa, N. Hasgawa, H. Fukuda, S. Katagiri, “Imaging characteristics of multiphase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30, 2991–2997 (1991).
    [CrossRef]
  24. C. Pierrat, T. Siegrist, J. deMarco, L. Harriot, S. Vaidya, “Multiple-layer blank structure for phase-shifting mask fabrication,” J. Vac. Sci. Technol. B 14(1), 63–68 (1996).
    [CrossRef]
  25. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
    [CrossRef]

1998

G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
[CrossRef]

1997

E. Pawlowski, H. Engel, “Fabrication of multilevel diffractive optical elements with a single amplitude/phase mask,” Pure Appl. Opt. 6, 655–662 (1997).
[CrossRef]

R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
[CrossRef]

1996

C. Pierrat, T. Siegrist, J. deMarco, L. Harriot, S. Vaidya, “Multiple-layer blank structure for phase-shifting mask fabrication,” J. Vac. Sci. Technol. B 14(1), 63–68 (1996).
[CrossRef]

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
[CrossRef]

U. Hilbk, Th. Hermes, J. Saniter, F.-J. Westphal, “High capacity WDM overlay on a passive optical network,” Electron. Lett. 32, 2162–2163 (1996).
[CrossRef]

1995

K. Okamoto, K. Moriwaki, S. Suzuki, “Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon,” Electron. Lett. 31, 184–185 (1995).
[CrossRef]

1994

D. Yevick, “A guide to electric field propagation techniques for guided-wave optics,” Opt. Quantum Electron. 26, 185–197 (1994).
[CrossRef]

J. C. Chen, S. Jüngling, “Computation of high order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, 199–205 (1994).
[CrossRef]

1991

K. Sasayama, M. Okuno, K. Habara, “Coherent optical transversal filter using silica-based waveguides for high speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

T. Terasawa, N. Hasgawa, H. Fukuda, S. Katagiri, “Imaging characteristics of multiphase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30, 2991–2997 (1991).
[CrossRef]

1990

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.001–250 nm,” IEEE J. Select. Areas Commun. 8, 1120–1126 (1990).
[CrossRef]

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

1989

K. W. Cheung, D. A. Smith, J. E. Baran, B. L. Heffner, “Multiple channel operation of an integrated acousto-optic tunable filter,” Electron. Lett. 25, 375–376 (1989).
[CrossRef]

1988

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[CrossRef]

1987

1983

J. V. Roey, J. van der Donk, P. E. Lagasse, “Beam propagation: analysis and assessment,” J. Opt. Soc. Am. 71, 803–810 (1983).
[CrossRef]

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2–TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

1982

M. D. Levenson, N. D. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 12, 1828–1836 (1982).
[CrossRef]

1977

1973

A. Yariv, “Coupled-mode theory for guide-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

Baran, J. E.

K. W. Cheung, D. A. Smith, J. E. Baran, B. L. Heffner, “Multiple channel operation of an integrated acousto-optic tunable filter,” Electron. Lett. 25, 375–376 (1989).
[CrossRef]

Bräuer, A.

Chen, J. C.

J. C. Chen, S. Jüngling, “Computation of high order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, 199–205 (1994).
[CrossRef]

Cheung, K. W.

K. W. Cheung, D. A. Smith, J. E. Baran, B. L. Heffner, “Multiple channel operation of an integrated acousto-optic tunable filter,” Electron. Lett. 25, 375–376 (1989).
[CrossRef]

Cohen, L. G.

Y. P. Li, L. G. Cohen, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, 15–19 September 1996, Oslo, Norway (NEXUS Media Ltd., Oslo, Norway, 1996), paper TuC.3.4, pp. 123–126.

Dannberg, P.

deMarco, J.

C. Pierrat, T. Siegrist, J. deMarco, L. Harriot, S. Vaidya, “Multiple-layer blank structure for phase-shifting mask fabrication,” J. Vac. Sci. Technol. B 14(1), 63–68 (1996).
[CrossRef]

Dragone, C.

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

Edahiro, T.

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2–TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

Edwards, C. A.

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

Ehlers, H.

G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
[CrossRef]

Engel, H.

E. Pawlowski, H. Engel, “Fabrication of multilevel diffractive optical elements with a single amplitude/phase mask,” Pure Appl. Opt. 6, 655–662 (1997).
[CrossRef]

Ferstl, M.

G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
[CrossRef]

Fukuda, H.

T. Terasawa, N. Hasgawa, H. Fukuda, S. Katagiri, “Imaging characteristics of multiphase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30, 2991–2997 (1991).
[CrossRef]

Fürst, W.

G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
[CrossRef]

Habara, K.

K. Sasayama, M. Okuno, K. Habara, “Coherent optical transversal filter using silica-based waveguides for high speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

Harriot, L.

C. Pierrat, T. Siegrist, J. deMarco, L. Harriot, S. Vaidya, “Multiple-layer blank structure for phase-shifting mask fabrication,” J. Vac. Sci. Technol. B 14(1), 63–68 (1996).
[CrossRef]

Hasgawa, N.

T. Terasawa, N. Hasgawa, H. Fukuda, S. Katagiri, “Imaging characteristics of multiphase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30, 2991–2997 (1991).
[CrossRef]

Heffner, B. L.

K. W. Cheung, D. A. Smith, J. E. Baran, B. L. Heffner, “Multiple channel operation of an integrated acousto-optic tunable filter,” Electron. Lett. 25, 375–376 (1989).
[CrossRef]

Hermes, Th.

U. Hilbk, Th. Hermes, J. Saniter, F.-J. Westphal, “High capacity WDM overlay on a passive optical network,” Electron. Lett. 32, 2162–2163 (1996).
[CrossRef]

Hilbk, U.

U. Hilbk, Th. Hermes, J. Saniter, F.-J. Westphal, “High capacity WDM overlay on a passive optical network,” Electron. Lett. 32, 2162–2163 (1996).
[CrossRef]

Himeno, A.

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
[CrossRef]

Jinguji, K.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.001–250 nm,” IEEE J. Select. Areas Commun. 8, 1120–1126 (1990).
[CrossRef]

Jüngling, S.

J. C. Chen, S. Jüngling, “Computation of high order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, 199–205 (1994).
[CrossRef]

Karthe, W.

Katagiri, S.

T. Terasawa, N. Hasgawa, H. Fukuda, S. Katagiri, “Imaging characteristics of multiphase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30, 2991–2997 (1991).
[CrossRef]

Kawachi, M.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.001–250 nm,” IEEE J. Select. Areas Commun. 8, 1120–1126 (1990).
[CrossRef]

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2–TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

Kistler, R. C.

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

Kley, E.-B.

Kominato, T.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.001–250 nm,” IEEE J. Select. Areas Commun. 8, 1120–1126 (1990).
[CrossRef]

Kuhlow, B.

G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
[CrossRef]

Lagasse, P. E.

Levenson, M. D.

M. D. Levenson, N. D. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 12, 1828–1836 (1982).
[CrossRef]

Li, Y. P.

Y. P. Li, L. G. Cohen, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, 15–19 September 1996, Oslo, Norway (NEXUS Media Ltd., Oslo, Norway, 1996), paper TuC.3.4, pp. 123–126.

Moriwaki, K.

K. Okamoto, K. Moriwaki, S. Suzuki, “Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon,” Electron. Lett. 31, 184–185 (1995).
[CrossRef]

Ohmori, Y.

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
[CrossRef]

Okamoto, K.

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
[CrossRef]

K. Okamoto, K. Moriwaki, S. Suzuki, “Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon,” Electron. Lett. 31, 184–185 (1995).
[CrossRef]

Okuno, M.

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
[CrossRef]

K. Sasayama, M. Okuno, K. Habara, “Coherent optical transversal filter using silica-based waveguides for high speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

Pawlowski, E.

G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
[CrossRef]

E. Pawlowski, H. Engel, “Fabrication of multilevel diffractive optical elements with a single amplitude/phase mask,” Pure Appl. Opt. 6, 655–662 (1997).
[CrossRef]

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
[CrossRef]

E. Pawlowski, “Diffractive optical elements: fabrication and measurement of wavelength division demultiplexer,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 158–164 (1995).

Petit, R.

R. Petit, Electromagnetic Theory of Gratings (Springer Verlag, Berlin, 1980).
[CrossRef]

Pierrat, C.

C. Pierrat, T. Siegrist, J. deMarco, L. Harriot, S. Vaidya, “Multiple-layer blank structure for phase-shifting mask fabrication,” J. Vac. Sci. Technol. B 14(1), 63–68 (1996).
[CrossRef]

Przyrembel, G.

G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
[CrossRef]

Roey, J. V.

Sakuda, K.

Saniter, J.

U. Hilbk, Th. Hermes, J. Saniter, F.-J. Westphal, “High capacity WDM overlay on a passive optical network,” Electron. Lett. 32, 2162–2163 (1996).
[CrossRef]

Sasayama, K.

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
[CrossRef]

K. Sasayama, M. Okuno, K. Habara, “Coherent optical transversal filter using silica-based waveguides for high speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

Schnabel, B.

Siegrist, T.

C. Pierrat, T. Siegrist, J. deMarco, L. Harriot, S. Vaidya, “Multiple-layer blank structure for phase-shifting mask fabrication,” J. Vac. Sci. Technol. B 14(1), 63–68 (1996).
[CrossRef]

Simpson, R. A.

M. D. Levenson, N. D. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 12, 1828–1836 (1982).
[CrossRef]

Smit, M. K.

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[CrossRef]

Smith, D. A.

K. W. Cheung, D. A. Smith, J. E. Baran, B. L. Heffner, “Multiple channel operation of an integrated acousto-optic tunable filter,” Electron. Lett. 25, 375–376 (1989).
[CrossRef]

Steingrüber, R.

G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
[CrossRef]

Sugita, A.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.001–250 nm,” IEEE J. Select. Areas Commun. 8, 1120–1126 (1990).
[CrossRef]

Suzuki, S.

K. Okamoto, K. Moriwaki, S. Suzuki, “Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon,” Electron. Lett. 31, 184–185 (1995).
[CrossRef]

Takato, N.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.001–250 nm,” IEEE J. Select. Areas Commun. 8, 1120–1126 (1990).
[CrossRef]

Takiguchi, K.

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
[CrossRef]

Terasawa, T.

T. Terasawa, N. Hasgawa, H. Fukuda, S. Katagiri, “Imaging characteristics of multiphase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30, 2991–2997 (1991).
[CrossRef]

Toba, H.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.001–250 nm,” IEEE J. Select. Areas Commun. 8, 1120–1126 (1990).
[CrossRef]

Tomlinson, W. J.

Vaidya, S.

C. Pierrat, T. Siegrist, J. deMarco, L. Harriot, S. Vaidya, “Multiple-layer blank structure for phase-shifting mask fabrication,” J. Vac. Sci. Technol. B 14(1), 63–68 (1996).
[CrossRef]

van der Donk, J.

Viswanathan, N. D.

M. D. Levenson, N. D. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 12, 1828–1836 (1982).
[CrossRef]

Waldhäusl, R.

Westphal, F.-J.

U. Hilbk, Th. Hermes, J. Saniter, F.-J. Westphal, “High capacity WDM overlay on a passive optical network,” Electron. Lett. 32, 2162–2163 (1996).
[CrossRef]

Yamada, M.

Yariv, A.

A. Yariv, “Coupled-mode theory for guide-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

Yasu, M.

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2–TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

Yevick, D.

D. Yevick, “A guide to electric field propagation techniques for guided-wave optics,” Opt. Quantum Electron. 26, 185–197 (1994).
[CrossRef]

Appl. Opt.

Electron. Lett.

K. W. Cheung, D. A. Smith, J. E. Baran, B. L. Heffner, “Multiple channel operation of an integrated acousto-optic tunable filter,” Electron. Lett. 25, 375–376 (1989).
[CrossRef]

E. Pawlowski, K. Takiguchi, M. Okuno, K. Sasayama, A. Himeno, K. Okamoto, Y. Ohmori, “Variable bandwidth and tunable centre frequency filter using transversal-form programmable optical filter,” Electron. Lett. 32, 113–114 (1996).
[CrossRef]

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
[CrossRef]

K. Okamoto, K. Moriwaki, S. Suzuki, “Fabrication of 64 × 64 arrayed-waveguide grating multiplexer on silicon,” Electron. Lett. 31, 184–185 (1995).
[CrossRef]

U. Hilbk, Th. Hermes, J. Saniter, F.-J. Westphal, “High capacity WDM overlay on a passive optical network,” Electron. Lett. 32, 2162–2163 (1996).
[CrossRef]

G. Przyrembel, B. Kuhlow, E. Pawlowski, M. Ferstl, W. Fürst, H. Ehlers, R. Steingrüber, “Multichannel 1.3 µm/1.55 µm AWG multiplexer/demultiplexer for WDM-PONs,” Electron. Lett. 34, 263–264 (1998).
[CrossRef]

M. Kawachi, M. Yasu, T. Edahiro, “Fabrication of SiO2–TiO2 glass planar optical waveguides by flame hydrolysis deposition,” Electron. Lett. 19, 583–584 (1983).
[CrossRef]

IEEE J. Quantum Electron.

A. Yariv, “Coupled-mode theory for guide-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
[CrossRef]

IEEE J. Select. Areas Commun.

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, M. Kawachi, “Silica-based integrated optic Mach–Zehnder multi/demultiplexer family with channel spacing of 0.001–250 nm,” IEEE J. Select. Areas Commun. 8, 1120–1126 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Dragone, C. A. Edwards, R. C. Kistler, “Integrated optics N × N multiplexer on silicon,” IEEE Photon. Technol. Lett. 3, 896–899 (1991).
[CrossRef]

IEEE Trans. Electron. Devices

M. D. Levenson, N. D. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 12, 1828–1836 (1982).
[CrossRef]

J. Lightwave Technol.

K. Sasayama, M. Okuno, K. Habara, “Coherent optical transversal filter using silica-based waveguides for high speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

J. Opt. Soc. Am.

J. Vac. Sci. Technol. B

C. Pierrat, T. Siegrist, J. deMarco, L. Harriot, S. Vaidya, “Multiple-layer blank structure for phase-shifting mask fabrication,” J. Vac. Sci. Technol. B 14(1), 63–68 (1996).
[CrossRef]

Jpn. J. Appl. Phys.

T. Terasawa, N. Hasgawa, H. Fukuda, S. Katagiri, “Imaging characteristics of multiphase-shifting and halftone phase-shifting masks,” Jpn. J. Appl. Phys. 30, 2991–2997 (1991).
[CrossRef]

Opt. Quantum Electron.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

D. Yevick, “A guide to electric field propagation techniques for guided-wave optics,” Opt. Quantum Electron. 26, 185–197 (1994).
[CrossRef]

J. C. Chen, S. Jüngling, “Computation of high order waveguide modes by imaginary-distance beam propagation method,” Opt. Quantum Electron. 26, 199–205 (1994).
[CrossRef]

Pure Appl. Opt.

E. Pawlowski, H. Engel, “Fabrication of multilevel diffractive optical elements with a single amplitude/phase mask,” Pure Appl. Opt. 6, 655–662 (1997).
[CrossRef]

Other

R. Petit, Electromagnetic Theory of Gratings (Springer Verlag, Berlin, 1980).
[CrossRef]

E. Pawlowski, “Diffractive optical elements: fabrication and measurement of wavelength division demultiplexer,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 158–164 (1995).

Y. P. Li, L. G. Cohen, “Demonstration and application of a monolithic two-PONs-in-one device,” in Proceedings of the Twenty-second European Conference on Optical Communication ECOC ’96, 15–19 September 1996, Oslo, Norway (NEXUS Media Ltd., Oslo, Norway, 1996), paper TuC.3.4, pp. 123–126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

WDM–PON transmission path in a WDM network. CO, central office; RN, remote node; ONU’s, optical network units; MUX/DEMUX, multiplexer–demultiplexer.

Fig. 2
Fig. 2

Schematic diagram of a WDM–PON demultiplexer.

Fig. 3
Fig. 3

Waveguide and grating-coupler configuration of a WDM–PON demultiplexer.

Fig. 4
Fig. 4

Waveform when light is coupled from the grating into the output demultiplexer waveguides.

Fig. 5
Fig. 5

View of the interface between the input waveguides, the first slab region, and the output waveguides.

Fig. 6
Fig. 6

SEM photographs of (a) the etched input slab region and (b) the AWG’s.

Fig. 7
Fig. 7

SEM photographs of gratings (a) transferred by optical phase-mask lithography into a 1.2-µm-thick resist (AZ 5214), (b) etched into silicon on top of a slab waveguide, (c) blazed by oblique sputtering. The grating spacing is Λ = 760 nm.

Fig. 8
Fig. 8

Diffraction efficiencies of binary and blazed grating couplers.

Fig. 9
Fig. 9

Measured transmission spectrum of the 8 × 8 AWG–PON with a 200-GHz channel spacing.

Tables (1)

Tables Icon

Table 1 Optimized Demultiplexer Parameters Used in the Experiments

Metrics