Abstract

Micromirrors were fabricated in gallium phosphide by mass transport to provide spatial-mode control of vertical-cavity surface-emitting lasers (VCSEL’s). The concave mirrors were used in an external-cavity configuration to provide spatial filtering in the far field. Single-mode cw lasing was demonstrated in 15-µm-diameter VCSEL’s with currents as high as 6 times threshold. The fabrication process was extended to micromirrors in gallium arsenide by use of a replication and dry-etch transfer process.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
    [CrossRef]
  2. G. C. Wilson, M. A. Hadley, J. S. Smith, K. Y. Lau, “High single-mode output power from compact external microcavity surface-emitting laser diode,” Appl. Phys. Lett. 63, 3265–3267 (1993).
    [CrossRef]
  3. B. J. Koch, J. R. Leger, A. Gopinath, Z. Wang, “Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,” Appl. Phys. Lett. 70, 2359–2361 (1997).
    [CrossRef]
  4. R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
    [CrossRef]
  5. G. Q. Chen, J. R. Leger, A. Gopinath, “Angular filtering of spatial modes in a vertical cavity surface emitting laser by a Fabry–Perot etalon,” Appl. Phys. Lett. 74, 1069–1071 (1999).
    [CrossRef]
  6. J. R. Leger, D. Chen, K. Dai, “High modal discrimination in a Nd:YAG laser using internal phase gratings,” Opt. Lett. 19, 1976–1978 (1994).
    [CrossRef] [PubMed]
  7. Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
    [CrossRef]
  8. T. A. Ballen, J. R. Leger, “Mass-transport fabrication of off-axis and prismatic gallium-phosphide optics,” Appl. Opt. 38, 3025–3029 (1999).
    [CrossRef]
  9. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
    [CrossRef]
  10. J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
    [CrossRef]
  11. Y. C. Chung, Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
    [CrossRef]
  12. Z. L. Liau, D. E. Mull, D. L. Hovey, “Solid state research,” (Lincoln Laboratory, MIT, Cambridge, Mass., 1994).
  13. E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectr. Eng. 35, 385–388 (1997).
    [CrossRef]
  14. H. Sankur, R. Hall, E. Motamedi, W. Gunning, W. Tennant, “Fabrication of microlens arrays by reactive ion milling,” in Minaturized Systems with Micro-Optics and Micromechanics, M. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
    [CrossRef]
  15. J. Bengtsson, N. Eriksson, A. Larsson, “Small-feature-size fan-out kinoform etched in GaAs,” Appl. Opt. 35, 801–806 (1996).
    [CrossRef] [PubMed]
  16. J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Nanofabrication of subwavelength, binary, high-efficiency diffractive optical elements in GaAs,” J. Vac. Sci. Technol. B 13, 2705–270 (1995).
    [CrossRef]
  17. F. Nikolajeff, S. Hard, B. Curtis, “Diffractive microlenses replicated in fused silica for excimer laser beam homogenizing,” Appl. Opt. 36, 8481–8489 (1997).
    [CrossRef]
  18. Y. Z. Juang, Y. K. Su, S. C. Shei, B. C. Fang, “Comparing reactive ion etching of III–V compounds in Cl2/BCl3/Ar and CCl2F2/BCl3/Ar discharges,” J. Vac. Sci. Technol. A 12, 75–82 (1994).
    [CrossRef]
  19. J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
    [CrossRef]
  20. Z. L. Liau, D. E. Mull, “Wafer fusion: a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
    [CrossRef]

1999 (2)

G. Q. Chen, J. R. Leger, A. Gopinath, “Angular filtering of spatial modes in a vertical cavity surface emitting laser by a Fabry–Perot etalon,” Appl. Phys. Lett. 74, 1069–1071 (1999).
[CrossRef]

T. A. Ballen, J. R. Leger, “Mass-transport fabrication of off-axis and prismatic gallium-phosphide optics,” Appl. Opt. 38, 3025–3029 (1999).
[CrossRef]

1997 (4)

B. J. Koch, J. R. Leger, A. Gopinath, Z. Wang, “Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,” Appl. Phys. Lett. 70, 2359–2361 (1997).
[CrossRef]

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectr. Eng. 35, 385–388 (1997).
[CrossRef]

F. Nikolajeff, S. Hard, B. Curtis, “Diffractive microlenses replicated in fused silica for excimer laser beam homogenizing,” Appl. Opt. 36, 8481–8489 (1997).
[CrossRef]

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
[CrossRef]

1996 (1)

1995 (2)

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Nanofabrication of subwavelength, binary, high-efficiency diffractive optical elements in GaAs,” J. Vac. Sci. Technol. B 13, 2705–270 (1995).
[CrossRef]

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

1994 (3)

Y. Z. Juang, Y. K. Su, S. C. Shei, B. C. Fang, “Comparing reactive ion etching of III–V compounds in Cl2/BCl3/Ar and CCl2F2/BCl3/Ar discharges,” J. Vac. Sci. Technol. A 12, 75–82 (1994).
[CrossRef]

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

J. R. Leger, D. Chen, K. Dai, “High modal discrimination in a Nd:YAG laser using internal phase gratings,” Opt. Lett. 19, 1976–1978 (1994).
[CrossRef] [PubMed]

1993 (3)

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

G. C. Wilson, M. A. Hadley, J. S. Smith, K. Y. Lau, “High single-mode output power from compact external microcavity surface-emitting laser diode,” Appl. Phys. Lett. 63, 3265–3267 (1993).
[CrossRef]

1991 (1)

Y. C. Chung, Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
[CrossRef]

1990 (2)

Z. L. Liau, D. E. Mull, “Wafer fusion: a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
[CrossRef]

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

Abernathy, C. R.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
[CrossRef]

Abraham, M. H.

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Asom, M. T.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[CrossRef]

Ballen, T. A.

Bengtsson, J.

Callis, S. E.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[CrossRef]

Chen, D.

Chen, G. Q.

G. Q. Chen, J. R. Leger, A. Gopinath, “Angular filtering of spatial modes in a vertical cavity surface emitting laser by a Fabry–Perot etalon,” Appl. Phys. Lett. 74, 1069–1071 (1999).
[CrossRef]

Chung, Y. C.

Y. C. Chung, Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
[CrossRef]

Coldren, L. A.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectr. Eng. 35, 385–388 (1997).
[CrossRef]

Curtis, B.

Dai, K.

Dennis, C. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Eriksson, N.

Fang, B. C.

Y. Z. Juang, Y. K. Su, S. C. Shei, B. C. Fang, “Comparing reactive ion etching of III–V compounds in Cl2/BCl3/Ar and CCl2F2/BCl3/Ar discharges,” J. Vac. Sci. Technol. A 12, 75–82 (1994).
[CrossRef]

Fields, R. A.

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Focht, M. W.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[CrossRef]

Gopinath, A.

G. Q. Chen, J. R. Leger, A. Gopinath, “Angular filtering of spatial modes in a vertical cavity surface emitting laser by a Fabry–Perot etalon,” Appl. Phys. Lett. 74, 1069–1071 (1999).
[CrossRef]

B. J. Koch, J. R. Leger, A. Gopinath, Z. Wang, “Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,” Appl. Phys. Lett. 70, 2359–2361 (1997).
[CrossRef]

Gunning, W.

H. Sankur, R. Hall, E. Motamedi, W. Gunning, W. Tennant, “Fabrication of microlens arrays by reactive ion milling,” in Minaturized Systems with Micro-Optics and Micromechanics, M. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Guth, G. D.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[CrossRef]

Hadley, M. A.

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

G. C. Wilson, M. A. Hadley, J. S. Smith, K. Y. Lau, “High single-mode output power from compact external microcavity surface-emitting laser diode,” Appl. Phys. Lett. 63, 3265–3267 (1993).
[CrossRef]

Hall, R.

H. Sankur, R. Hall, E. Motamedi, W. Gunning, W. Tennant, “Fabrication of microlens arrays by reactive ion milling,” in Minaturized Systems with Micro-Optics and Micromechanics, M. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Hard, S.

Hobson, W. S.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
[CrossRef]

Hong, J.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
[CrossRef]

Hovey, D. L.

Z. L. Liau, D. E. Mull, D. L. Hovey, “Solid state research,” (Lincoln Laboratory, MIT, Cambridge, Mass., 1994).

Hu, E. L.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectr. Eng. 35, 385–388 (1997).
[CrossRef]

Juang, Y. Z.

Y. Z. Juang, Y. K. Su, S. C. Shei, B. C. Fang, “Comparing reactive ion etching of III–V compounds in Cl2/BCl3/Ar and CCl2F2/BCl3/Ar discharges,” J. Vac. Sci. Technol. A 12, 75–82 (1994).
[CrossRef]

Koch, B. J.

B. J. Koch, J. R. Leger, A. Gopinath, Z. Wang, “Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,” Appl. Phys. Lett. 70, 2359–2361 (1997).
[CrossRef]

Kojima, K.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[CrossRef]

Lambers, E. S.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
[CrossRef]

Larsson, A.

Lau, K. Y.

G. C. Wilson, M. A. Hadley, J. S. Smith, K. Y. Lau, “High single-mode output power from compact external microcavity surface-emitting laser diode,” Appl. Phys. Lett. 63, 3265–3267 (1993).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Lee, J. W.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
[CrossRef]

Lee, Y. H.

Y. C. Chung, Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
[CrossRef]

Leger, J. R.

G. Q. Chen, J. R. Leger, A. Gopinath, “Angular filtering of spatial modes in a vertical cavity surface emitting laser by a Fabry–Perot etalon,” Appl. Phys. Lett. 74, 1069–1071 (1999).
[CrossRef]

T. A. Ballen, J. R. Leger, “Mass-transport fabrication of off-axis and prismatic gallium-phosphide optics,” Appl. Opt. 38, 3025–3029 (1999).
[CrossRef]

B. J. Koch, J. R. Leger, A. Gopinath, Z. Wang, “Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,” Appl. Phys. Lett. 70, 2359–2361 (1997).
[CrossRef]

J. R. Leger, D. Chen, K. Dai, “High modal discrimination in a Nd:YAG laser using internal phase gratings,” Opt. Lett. 19, 1976–1978 (1994).
[CrossRef] [PubMed]

Liau, Z. L.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

Z. L. Liau, D. E. Mull, “Wafer fusion: a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
[CrossRef]

Z. L. Liau, D. E. Mull, D. L. Hovey, “Solid state research,” (Lincoln Laboratory, MIT, Cambridge, Mass., 1994).

Morgan, R. A.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[CrossRef]

Motamedi, E.

H. Sankur, R. Hall, E. Motamedi, W. Gunning, W. Tennant, “Fabrication of microlens arrays by reactive ion milling,” in Minaturized Systems with Micro-Optics and Micromechanics, M. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Mull, D. E.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Z. L. Liau, D. E. Mull, “Wafer fusion: a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
[CrossRef]

Z. L. Liau, D. E. Mull, D. L. Hovey, “Solid state research,” (Lincoln Laboratory, MIT, Cambridge, Mass., 1994).

Nikolajeff, F.

Pearton, S. J.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
[CrossRef]

Ren, F.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
[CrossRef]

Robinson, G. D.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectr. Eng. 35, 385–388 (1997).
[CrossRef]

Rogers, L. E.

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[CrossRef]

Sankur, H.

H. Sankur, R. Hall, E. Motamedi, W. Gunning, W. Tennant, “Fabrication of microlens arrays by reactive ion milling,” in Minaturized Systems with Micro-Optics and Micromechanics, M. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Shei, S. C.

Y. Z. Juang, Y. K. Su, S. C. Shei, B. C. Fang, “Comparing reactive ion etching of III–V compounds in Cl2/BCl3/Ar and CCl2F2/BCl3/Ar discharges,” J. Vac. Sci. Technol. A 12, 75–82 (1994).
[CrossRef]

Smith, J. S.

G. C. Wilson, M. A. Hadley, J. S. Smith, K. Y. Lau, “High single-mode output power from compact external microcavity surface-emitting laser diode,” Appl. Phys. Lett. 63, 3265–3267 (1993).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Smith, R. E.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Nanofabrication of subwavelength, binary, high-efficiency diffractive optical elements in GaAs,” J. Vac. Sci. Technol. B 13, 2705–270 (1995).
[CrossRef]

Strzelecka, E. M.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectr. Eng. 35, 385–388 (1997).
[CrossRef]

Su, Y. K.

Y. Z. Juang, Y. K. Su, S. C. Shei, B. C. Fang, “Comparing reactive ion etching of III–V compounds in Cl2/BCl3/Ar and CCl2F2/BCl3/Ar discharges,” J. Vac. Sci. Technol. A 12, 75–82 (1994).
[CrossRef]

Swenson, J. S.

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Tennant, W.

H. Sankur, R. Hall, E. Motamedi, W. Gunning, W. Tennant, “Fabrication of microlens arrays by reactive ion milling,” in Minaturized Systems with Micro-Optics and Micromechanics, M. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Vawter, G. A.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Nanofabrication of subwavelength, binary, high-efficiency diffractive optical elements in GaAs,” J. Vac. Sci. Technol. B 13, 2705–270 (1995).
[CrossRef]

Wang, Z.

B. J. Koch, J. R. Leger, A. Gopinath, Z. Wang, “Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,” Appl. Phys. Lett. 70, 2359–2361 (1997).
[CrossRef]

Warren, M. E.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Nanofabrication of subwavelength, binary, high-efficiency diffractive optical elements in GaAs,” J. Vac. Sci. Technol. B 13, 2705–270 (1995).
[CrossRef]

Wendt, J. R.

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Nanofabrication of subwavelength, binary, high-efficiency diffractive optical elements in GaAs,” J. Vac. Sci. Technol. B 13, 2705–270 (1995).
[CrossRef]

Williamson, R. C.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Wilson, G. C.

G. C. Wilson, M. A. Hadley, J. S. Smith, K. Y. Lau, “High single-mode output power from compact external microcavity surface-emitting laser diode,” Appl. Phys. Lett. 63, 3265–3267 (1993).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

Zeiger, H. J.

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (7)

G. Q. Chen, J. R. Leger, A. Gopinath, “Angular filtering of spatial modes in a vertical cavity surface emitting laser by a Fabry–Perot etalon,” Appl. Phys. Lett. 74, 1069–1071 (1999).
[CrossRef]

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

M. A. Hadley, G. C. Wilson, K. Y. Lau, J. S. Smith, “High single-transverse-mode output from external-cavity surface-emitting laser diodes,” Appl. Phys. Lett. 63, 1607–1609 (1993).
[CrossRef]

G. C. Wilson, M. A. Hadley, J. S. Smith, K. Y. Lau, “High single-mode output power from compact external microcavity surface-emitting laser diode,” Appl. Phys. Lett. 63, 3265–3267 (1993).
[CrossRef]

B. J. Koch, J. R. Leger, A. Gopinath, Z. Wang, “Single-mode vertical cavity surface emitting laser by graded-index lens spatial filtering,” Appl. Phys. Lett. 70, 2359–2361 (1997).
[CrossRef]

Z. L. Liau, D. E. Mull, “Wafer fusion: a novel technique for optoelectronic device fabrication and monolithic integration,” Appl. Phys. Lett. 56, 737–739 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. A. Morgan, G. D. Guth, M. W. Focht, M. T. Asom, K. Kojima, L. E. Rogers, S. E. Callis, “Transverse mode control of vertical-cavity top-surface-emitting lasers,” IEEE Photon. Technol. Lett. 5, 374–377 (1993).
[CrossRef]

Y. C. Chung, Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback,” IEEE Photon. Technol. Lett. 3, 597–599 (1991).
[CrossRef]

J. Appl. Phys. (1)

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

J. Vac. Sci. Technol. A (1)

Y. Z. Juang, Y. K. Su, S. C. Shei, B. C. Fang, “Comparing reactive ion etching of III–V compounds in Cl2/BCl3/Ar and CCl2F2/BCl3/Ar discharges,” J. Vac. Sci. Technol. A 12, 75–82 (1994).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. R. Wendt, G. A. Vawter, R. E. Smith, M. E. Warren, “Nanofabrication of subwavelength, binary, high-efficiency diffractive optical elements in GaAs,” J. Vac. Sci. Technol. B 13, 2705–270 (1995).
[CrossRef]

Microelectr. Eng. (1)

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, E. L. Hu, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectr. Eng. 35, 385–388 (1997).
[CrossRef]

Opt. Lett. (1)

Plasma Chem. Plasma Process. (1)

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, S. J. Pearton, W. S. Hobson, F. Ren, “Plasma etching of III–V semiconductors in BCl3 chemistries: GaAs and related compounds,” Plasma Chem. Plasma Process. 17, 155–167 (1997).
[CrossRef]

Other (2)

H. Sankur, R. Hall, E. Motamedi, W. Gunning, W. Tennant, “Fabrication of microlens arrays by reactive ion milling,” in Minaturized Systems with Micro-Optics and Micromechanics, M. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Z. L. Liau, D. E. Mull, D. L. Hovey, “Solid state research,” (Lincoln Laboratory, MIT, Cambridge, Mass., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Micromirror integrated with an InGaAs VCSEL for spatial-mode discrimination by means of spatial filtering in the far field. QW, quantum well.

Fig. 2
Fig. 2

Microscope photograph of the Cr mask used to produce lithographically the binary preform. The distance between the outermost lines is 150 µm.

Fig. 3
Fig. 3

Profilometer measurement of the surface profile of the fabricated GaP micromirror.

Fig. 4
Fig. 4

Scan trace through the center of the GaP micromirror (solid curve). A sphere with a radius of curvature of 2.25 mm was fitted to the profile (dashed curve). The optical path difference between the sphere and the measured profile was λ/30 (rms).

Fig. 5
Fig. 5

Experimental setup used for testing the micromirror. The afocal system consists of two lenses (L1 and L2) to image the VCSEL out onto the micromirror. Varying the focal lengths of the two lenses allows different beam magnifications to be obtained. A beam splitter (BS) couples light out from the cavity.

Fig. 6
Fig. 6

Spectral data for a 15-µm VCSEL without spatial filtering. The VCSEL becomes multimode at a drive current of 1.6I th.

Fig. 7
Fig. 7

Spectral data for a 15-µm VCSEL with spatial filtering. The VCSEL stays single mode for currents up to 6I th.

Fig. 8
Fig. 8

L-I curve for a 10-µm VCSEL with a spatially filtering GaP micromirror (solid curve) and without spatially filtering (dashed curve).

Fig. 9
Fig. 9

Method for replicating a micro-optical structure in GaAs.

Fig. 10
Fig. 10

Profilometer measurement of a biprism originally fabricated in GaP by mass transport and subsequently cast in a thin polymer film. The height of the prism is 7.3 µm.

Fig. 11
Fig. 11

Profilometer measurement of the same biprism shown in Fig. 10 but after transfer into GaAs. The height of the etched prism is 13.1 µm.

Fig. 12
Fig. 12

Profilometer trace through the center of a micromirror replicated in GaAs. The sag of the mirror is 9.7 µm.

Fig. 13
Fig. 13

Interferogram of one replicated GaAs micromirror.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ω0  λz0/πn1/2,
N=a2/λz0,

Metrics