Abstract

Recently, a new class of laser resonators was introduced that utilizes diffractive mirrors and an additional intracavity diffractive phase element. High modal discrimination and low fundamental-mode loss were achieved simultaneously by use of sinusoidal and pseudorandom diffractive phase elements. An intracavity phase element consisting of a simple single-step phase modulation is approximated by a Gaussian with a small radius. Explicit expressions are obtained for the modal-discrimination factor as a function of resonator parameters with a Gaussian output mirror. Numerical simulations are performed for a phase element with a step singularity in the phase function, the fundamental mode of this cavity being super-Gaussian. The modal discrimination of the cavity is studied for different radii of the single-step phase modulation, the position of the phase plate, and the cavity Fresnel number. Optimum solutions are found for a plane output mirror with either a striped or a circular shape.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Bélanger, C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett. 16, 1057–1059 (1991).
    [CrossRef] [PubMed]
  2. J. R. Leger, D. Chen, Z. Wang, “Diffractive optical element for mode shaping of a Nd:YAG laser,” Opt. Lett. 19, 108–110 (1994).
    [CrossRef] [PubMed]
  3. J. R. Leger, D. Chen, K. Dai, “High modal discrimination in a Nd:YAG laser resonator with internal phase gratings,” Opt. Lett. 19, 1976–1978 (1994).
    [CrossRef] [PubMed]
  4. J. R. Leger, D. Chen, G. Mowry, “Design and performance of diffractive optics custom laser resonators,” Appl. Opt. 34, 2498–2509 (1995).
    [CrossRef] [PubMed]
  5. H. P. Herzig, ed., Microoptics (Taylor & Francis, London, 1997).
  6. A. P. Napartovich, N. N. Elkin, V. N. Troschieva, D. V. Vysotsky, J. R. Leger, “Simplified intracavity phase plates for increasing modal discrimination in a laser cavity,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 62–73 (1997).
    [CrossRef]

1995 (1)

1994 (2)

1991 (1)

Bélanger, P. A.

Chen, D.

Dai, K.

Elkin, N. N.

A. P. Napartovich, N. N. Elkin, V. N. Troschieva, D. V. Vysotsky, J. R. Leger, “Simplified intracavity phase plates for increasing modal discrimination in a laser cavity,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 62–73 (1997).
[CrossRef]

Leger, J. R.

Mowry, G.

Napartovich, A. P.

A. P. Napartovich, N. N. Elkin, V. N. Troschieva, D. V. Vysotsky, J. R. Leger, “Simplified intracavity phase plates for increasing modal discrimination in a laser cavity,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 62–73 (1997).
[CrossRef]

Paré, C.

Troschieva, V. N.

A. P. Napartovich, N. N. Elkin, V. N. Troschieva, D. V. Vysotsky, J. R. Leger, “Simplified intracavity phase plates for increasing modal discrimination in a laser cavity,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 62–73 (1997).
[CrossRef]

Vysotsky, D. V.

A. P. Napartovich, N. N. Elkin, V. N. Troschieva, D. V. Vysotsky, J. R. Leger, “Simplified intracavity phase plates for increasing modal discrimination in a laser cavity,” in Solid State Lasers VI, R. Scheps, ed., Proc. SPIE2986, 62–73 (1997).
[CrossRef]

Wang, Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the cavity with a DMSM and a PP.

Fig. 2
Fig. 2

Intensity profile incident upon the DMSM. Cavity length L = 12.5 cm, λ = 1.06 × 10-4 cm, r out = 0.044 cm, a = 0.003 cm.

Fig. 3
Fig. 3

Phase profile of the DMSM surface. Cavity length L = 12.5 cm, λ = 1.06 × 10-4 cm, r out = 0.044 cm, a = 0.003 cm.

Fig. 4
Fig. 4

Eigenvalues for first two modes of the cavity. Cavity length L = 12.5 cm, λ = 1.06 × 10-4 cm.

Fig. 5
Fig. 5

Second-order-mode threshold gain plotted versus the PMF size and the PP location for a striped cavity with N 2= 1.46.

Fig. 6
Fig. 6

Second-order-mode threshold gain plotted versus the PMF size and the PP location for a striped cavity with N 2= 3.29.

Fig. 7
Fig. 7

Second-order-mode threshold gain plotted versus the PMF size and the PP location for a circular cavity with N 2 = 1.46.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

vz, x=v+z, xexpikz+v-z, xexp-ikz,
v+0, x=v00, x.
RDMSMx=v0L, x¯/v0L, x,
Tx=expiϕ|x|<a1|x|>a.
v0x=exp-x2/ω02,
Tx=2expiϕ-1exp-x2/a2+1,
γ2=b3/2+Γ¯22+gg-α+2+2-M1+gg-α+2+2g-α3/2
-Γ22+gg-α+2+2+M1+gg-α+2+2g-α3/2,
b=g+2-X±g+2-X2-X21/2X,
v0x=exp-x20/ω020,

Metrics