Abstract

A single collimating transmission off-axis blazed surface-relief holographic diffractive element that corrects the ellipticity and the astigmatism of a diode-laser beam was designed. The procedure was applied to a hypothetical laser operating at a wavelength of 633 nm that possesses extremely large astigmatism and relatively small ellipticity together with small diverging angles of the laser beam. The element was recorded with only homocentric diverging beams that had pure spherical wave fronts. Because of the off-axis nature of the element, the aberration of asymmetry had to be corrected. The element was tested in a reciprocal way when the incident wave was a collimated He–Ne laser beam. A diffraction-limited beam was obtained that was as large as approximately half of the designed aperture.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Gilbreath, A. E. Clement, J. W. Wagner, “Holographic optical elements which diffract efficiently in the near-infrared for operation with laser diodes for spacecraft communications,” in Practical Holography II, T. H. Jeong, ed., Proc. SPIE747, 43–50 (1987).
    [CrossRef]
  2. S. Sinzinger, K.-H. Brenner, J. Moisel, T. Spick, M. Testorf, “Astigmatic gradient-index elements for laser-diode collimation and beam shaping,” Appl. Opt. 34, 6626–6632 (1995).
    [CrossRef] [PubMed]
  3. S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3662 (1994).
    [CrossRef]
  4. T. Hessler, M. Rossi, R. E. Kunz, “Diffractive optical elements for laser diodes,” in Technical Digest of the Workshop on Diffractive Optics, J. Turunen, F. Wyrowski, eds. (Nederlandse Philips Bedrijven B.V., The Netherlands, 1995), pp. 32–33.
  5. H. P. Herzig, “Holographic optical elements (HOE) for semiconductor lasers,” Opt. Commun. 58, 144–148 (1986).
    [CrossRef]
  6. J. T. Chang, D. C. Su, Z. X. Huang, Y. T. Huang, “A substrate-mode collimating and beam shaping element for laser diodes,” Appl. Phys. Lett. 70, 919–921 (1997).
    [CrossRef]
  7. Y. Amitai, J. W. Goodman, “Analytic design of an achromatic double grating coupler,” Appl. Opt. 30, 2970–2974 (1990).
    [CrossRef]
  8. A. Aharoni, J. W. Goodman, Y. Amitai, “Beam-correcting holographic doublet for focusing multimode laser diodes,” Opt. Lett. 18, 179–181 (1993).
    [CrossRef] [PubMed]
  9. N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316–319 (1968).
    [CrossRef]
  10. I. Aubrecht, M. Miler, “Diffraction efficiency of holographic blazed diffraction gratings,” Czech. J. Phys. 41, 1231–1237 (1991).
    [CrossRef]
  11. T. Delort, D. Maystre, J. P. Laude, “Perfect blazing for transmission gratings: generalization and numerical verification,” J. Opt. Soc. Am. A 13, 2034–2040 (1996).
    [CrossRef]
  12. M. Miler, I. Aubrecht, I. Koudela, “Efficiency of transmission surface-relief holographic gratings for backplane interconnects,” in Optics for Science and Technology, J. S. Chang, J. H. Lee, S. Y. Lee, C. H. Nam, eds., Proc. SPIE2778, 217–218 (1996).
  13. E. B. Champagne, “Nonparaxial imaging, magnification, and aberration properties in holography,” J. Opt. Soc. Am. 57, 51–55 (1967).
    [CrossRef]

1997

J. T. Chang, D. C. Su, Z. X. Huang, Y. T. Huang, “A substrate-mode collimating and beam shaping element for laser diodes,” Appl. Phys. Lett. 70, 919–921 (1997).
[CrossRef]

1996

1995

1994

S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3662 (1994).
[CrossRef]

1993

1991

I. Aubrecht, M. Miler, “Diffraction efficiency of holographic blazed diffraction gratings,” Czech. J. Phys. 41, 1231–1237 (1991).
[CrossRef]

1990

1986

H. P. Herzig, “Holographic optical elements (HOE) for semiconductor lasers,” Opt. Commun. 58, 144–148 (1986).
[CrossRef]

1968

N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316–319 (1968).
[CrossRef]

1967

Aharoni, A.

Amitai, Y.

Aubrecht, I.

I. Aubrecht, M. Miler, “Diffraction efficiency of holographic blazed diffraction gratings,” Czech. J. Phys. 41, 1231–1237 (1991).
[CrossRef]

M. Miler, I. Aubrecht, I. Koudela, “Efficiency of transmission surface-relief holographic gratings for backplane interconnects,” in Optics for Science and Technology, J. S. Chang, J. H. Lee, S. Y. Lee, C. H. Nam, eds., Proc. SPIE2778, 217–218 (1996).

Brenner, K.-H.

Champagne, E. B.

Chang, J. T.

J. T. Chang, D. C. Su, Z. X. Huang, Y. T. Huang, “A substrate-mode collimating and beam shaping element for laser diodes,” Appl. Phys. Lett. 70, 919–921 (1997).
[CrossRef]

Clement, A. E.

C. Gilbreath, A. E. Clement, J. W. Wagner, “Holographic optical elements which diffract efficiently in the near-infrared for operation with laser diodes for spacecraft communications,” in Practical Holography II, T. H. Jeong, ed., Proc. SPIE747, 43–50 (1987).
[CrossRef]

Delort, T.

Gilbreath, C.

C. Gilbreath, A. E. Clement, J. W. Wagner, “Holographic optical elements which diffract efficiently in the near-infrared for operation with laser diodes for spacecraft communications,” in Practical Holography II, T. H. Jeong, ed., Proc. SPIE747, 43–50 (1987).
[CrossRef]

Goodman, J. W.

Herzig, H. P.

H. P. Herzig, “Holographic optical elements (HOE) for semiconductor lasers,” Opt. Commun. 58, 144–148 (1986).
[CrossRef]

Hessler, T.

T. Hessler, M. Rossi, R. E. Kunz, “Diffractive optical elements for laser diodes,” in Technical Digest of the Workshop on Diffractive Optics, J. Turunen, F. Wyrowski, eds. (Nederlandse Philips Bedrijven B.V., The Netherlands, 1995), pp. 32–33.

Huang, Y. T.

J. T. Chang, D. C. Su, Z. X. Huang, Y. T. Huang, “A substrate-mode collimating and beam shaping element for laser diodes,” Appl. Phys. Lett. 70, 919–921 (1997).
[CrossRef]

Huang, Z. X.

J. T. Chang, D. C. Su, Z. X. Huang, Y. T. Huang, “A substrate-mode collimating and beam shaping element for laser diodes,” Appl. Phys. Lett. 70, 919–921 (1997).
[CrossRef]

Ito, Y.

S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3662 (1994).
[CrossRef]

Koudela, I.

M. Miler, I. Aubrecht, I. Koudela, “Efficiency of transmission surface-relief holographic gratings for backplane interconnects,” in Optics for Science and Technology, J. S. Chang, J. H. Lee, S. Y. Lee, C. H. Nam, eds., Proc. SPIE2778, 217–218 (1996).

Kunz, R. E.

T. Hessler, M. Rossi, R. E. Kunz, “Diffractive optical elements for laser diodes,” in Technical Digest of the Workshop on Diffractive Optics, J. Turunen, F. Wyrowski, eds. (Nederlandse Philips Bedrijven B.V., The Netherlands, 1995), pp. 32–33.

Laude, J. P.

Maystre, D.

Miler, M.

I. Aubrecht, M. Miler, “Diffraction efficiency of holographic blazed diffraction gratings,” Czech. J. Phys. 41, 1231–1237 (1991).
[CrossRef]

M. Miler, I. Aubrecht, I. Koudela, “Efficiency of transmission surface-relief holographic gratings for backplane interconnects,” in Optics for Science and Technology, J. S. Chang, J. H. Lee, S. Y. Lee, C. H. Nam, eds., Proc. SPIE2778, 217–218 (1996).

Moisel, J.

Ogata, S.

S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3662 (1994).
[CrossRef]

Rossi, M.

T. Hessler, M. Rossi, R. E. Kunz, “Diffractive optical elements for laser diodes,” in Technical Digest of the Workshop on Diffractive Optics, J. Turunen, F. Wyrowski, eds. (Nederlandse Philips Bedrijven B.V., The Netherlands, 1995), pp. 32–33.

Sheridon, N. K.

N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316–319 (1968).
[CrossRef]

Sinzinger, S.

Spick, T.

Su, D. C.

J. T. Chang, D. C. Su, Z. X. Huang, Y. T. Huang, “A substrate-mode collimating and beam shaping element for laser diodes,” Appl. Phys. Lett. 70, 919–921 (1997).
[CrossRef]

Testorf, M.

Wagner, J. W.

C. Gilbreath, A. E. Clement, J. W. Wagner, “Holographic optical elements which diffract efficiently in the near-infrared for operation with laser diodes for spacecraft communications,” in Practical Holography II, T. H. Jeong, ed., Proc. SPIE747, 43–50 (1987).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. T. Chang, D. C. Su, Z. X. Huang, Y. T. Huang, “A substrate-mode collimating and beam shaping element for laser diodes,” Appl. Phys. Lett. 70, 919–921 (1997).
[CrossRef]

N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316–319 (1968).
[CrossRef]

Czech. J. Phys.

I. Aubrecht, M. Miler, “Diffraction efficiency of holographic blazed diffraction gratings,” Czech. J. Phys. 41, 1231–1237 (1991).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Commun.

H. P. Herzig, “Holographic optical elements (HOE) for semiconductor lasers,” Opt. Commun. 58, 144–148 (1986).
[CrossRef]

Opt. Eng.

S. Ogata, Y. Ito, “Laser-diode collimating light sources using micro-Fresnel lenses,” Opt. Eng. 33, 3656–3662 (1994).
[CrossRef]

Opt. Lett.

Other

M. Miler, I. Aubrecht, I. Koudela, “Efficiency of transmission surface-relief holographic gratings for backplane interconnects,” in Optics for Science and Technology, J. S. Chang, J. H. Lee, S. Y. Lee, C. H. Nam, eds., Proc. SPIE2778, 217–218 (1996).

T. Hessler, M. Rossi, R. E. Kunz, “Diffractive optical elements for laser diodes,” in Technical Digest of the Workshop on Diffractive Optics, J. Turunen, F. Wyrowski, eds. (Nederlandse Philips Bedrijven B.V., The Netherlands, 1995), pp. 32–33.

C. Gilbreath, A. E. Clement, J. W. Wagner, “Holographic optical elements which diffract efficiently in the near-infrared for operation with laser diodes for spacecraft communications,” in Practical Holography II, T. H. Jeong, ed., Proc. SPIE747, 43–50 (1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Meridional scheme of the holographic recording and replay: for recording, the rotational symmetric and homocentric divergent beams are used, whereas replay is performed with a diode-laser beam.

Fig. 2
Fig. 2

Scheme of using a holographic diffractive element for collimating a diode-laser beam.

Fig. 3
Fig. 3

Orientation of the diffractive element during the efficiency measurements.

Fig. 4
Fig. 4

Theoretical and experimental dependences of focal-line distances R i and R i on the output angle α o of the circular collimated He–Ne laser beam.

Fig. 5
Fig. 5

Dependence of (a) α o and (b) R o as a function of the distance y from the center of the holographic element in the meridional plane for small deviations of the input angles.

Fig. 6
Fig. 6

Diffraction pattern of the He–Ne laser beam in the focal plane of the holographic element for the angle α o when R i = R i, as captured by a CCD camera. The diameters of the incident beams are (a) 8 mm, (b) 12 mm, (c) 24 mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕo=ϕi±ϕ1-ϕ2,
sin αo=sin αi+μsin α1-sin α2
1Ro=1Ri+μ1R1-1R2
cos2 αoRo=cos2 αiRi+μcos2 α1R1-cos2 α2R2
sin αoRo2=sin αiRi2+μsin α1R12-sin α2R22,
sin αoRo2=sin3 αiRi2+μsin3 α1R12-sin3 α2R22.
cos αiDD.

Metrics