Abstract

A method for fabricating microlens arrays that uses the contraction effect of UV-curable photopolymers is presented. Lenses with diameters ranging from 0.2 to 2 mm that were made under different conditions are optically evaluated. The optimum conditions for producing low f-number lenses are discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
    [CrossRef] [PubMed]
  2. N. F. Borrelli, D. L. Morse, R. H. Bellman, W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. 24, 2520–2525 (1985).
    [CrossRef] [PubMed]
  3. N. F. Borrelli, D. L. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27, 476–479 (1988).
    [CrossRef] [PubMed]
  4. M. Oikawa, H. Nemoto, K. Hamanaka, E. Okuda, “High numerical aperture planar microlens with swelled structure,” Appl. Opt. 29, 4077–4080 (1990).
    [CrossRef] [PubMed]
  5. M. Fritze, M. B. Stern, P. W. Wyatt, “Laser-fabricated glass microlens arrays,” Opt. Lett. 23, 141–143 (1998).
    [CrossRef]
  6. M. Wakaki, Y. Komachi, G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
    [CrossRef]
  7. P. Pantelis, D. J. McCartney, “Polymer microlens arrays,” Pure Appl. Opt. 3, 103–108 (1994).
    [CrossRef]
  8. G. Y. Yoon, T. Jitsuno, M. Nakatsuka, S. Nakai, “Shack Hartmann wave-front measurement with a large F-number plastic microlens array,” Appl. Opt. 35, 188–192 (1996).
    [CrossRef] [PubMed]
  9. S. Lazare, J. Lopez, J. Turlet, M. Kufner, S. Kufner, P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion,” Appl. Opt. 35, 4471–4475 (1996).
    [CrossRef] [PubMed]
  10. S. Calixto, G. P. Padilla, “Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation,” Appl. Opt. 35, 6126–6130 (1996).
    [CrossRef] [PubMed]
  11. S. Calixto, M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101–2106 (1997).
    [CrossRef] [PubMed]
  12. B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997).
    [CrossRef] [PubMed]
  13. C. Croutxé-Barghorn, S. Calixto, D. J. Lougnot, “Self-developing photopolymer for the fabrication of relief micro-optical elements,” in Photosensitive Optical Materials and Devices, M. P. Andrews, ed., 2998, 222–231 (1997).
  14. T. Okamoto, R. Ohmori, S. Hayakawa, I. Seo, H. Sato, “Ultraviolet-cured polymer micro-optical elements,” Opt. Rev. 4, 516–520 (1997).
    [CrossRef]
  15. S. Masuda, T. Nose, S. Sato, “Optical properties of an UV-cured liquid-crystal microlens array,” Appl. Opt. 37, 2067–2073 (1998).
    [CrossRef]

1998 (3)

1997 (3)

1996 (3)

1994 (1)

P. Pantelis, D. J. McCartney, “Polymer microlens arrays,” Pure Appl. Opt. 3, 103–108 (1994).
[CrossRef]

1990 (1)

1988 (1)

1985 (1)

1982 (1)

Bellman, R. H.

Borrelli, N. F.

Calixto, S.

S. Calixto, M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101–2106 (1997).
[CrossRef] [PubMed]

S. Calixto, G. P. Padilla, “Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation,” Appl. Opt. 35, 6126–6130 (1996).
[CrossRef] [PubMed]

C. Croutxé-Barghorn, S. Calixto, D. J. Lougnot, “Self-developing photopolymer for the fabrication of relief micro-optical elements,” in Photosensitive Optical Materials and Devices, M. P. Andrews, ed., 2998, 222–231 (1997).

Chavel, P.

Corazza, D. J.

Croutxé-Barghorn, C.

C. Croutxé-Barghorn, S. Calixto, D. J. Lougnot, “Self-developing photopolymer for the fabrication of relief micro-optical elements,” in Photosensitive Optical Materials and Devices, M. P. Andrews, ed., 2998, 222–231 (1997).

Fritze, M.

Hamanaka, K.

Hayakawa, S.

T. Okamoto, R. Ohmori, S. Hayakawa, I. Seo, H. Sato, “Ultraviolet-cured polymer micro-optical elements,” Opt. Rev. 4, 516–520 (1997).
[CrossRef]

Iga, K.

Jitsuno, T.

Kanai, G.

Keyworth, B. P.

Komachi, Y.

Kufner, M.

Kufner, S.

Lazare, S.

Lopez, J.

Lougnot, D. J.

C. Croutxé-Barghorn, S. Calixto, D. J. Lougnot, “Self-developing photopolymer for the fabrication of relief micro-optical elements,” in Photosensitive Optical Materials and Devices, M. P. Andrews, ed., 2998, 222–231 (1997).

Mabbott, L.

Masuda, S.

McCartney, D. J.

P. Pantelis, D. J. McCartney, “Polymer microlens arrays,” Pure Appl. Opt. 3, 103–108 (1994).
[CrossRef]

McMullin, J. N.

Morgan, W. L.

Morse, D. L.

Nakai, S.

Nakatsuka, M.

Nemoto, H.

Nose, T.

Ohmori, R.

T. Okamoto, R. Ohmori, S. Hayakawa, I. Seo, H. Sato, “Ultraviolet-cured polymer micro-optical elements,” Opt. Rev. 4, 516–520 (1997).
[CrossRef]

Oikawa, M.

Okamoto, T.

T. Okamoto, R. Ohmori, S. Hayakawa, I. Seo, H. Sato, “Ultraviolet-cured polymer micro-optical elements,” Opt. Rev. 4, 516–520 (1997).
[CrossRef]

Okuda, E.

Padilla, G. P.

Pantelis, P.

P. Pantelis, D. J. McCartney, “Polymer microlens arrays,” Pure Appl. Opt. 3, 103–108 (1994).
[CrossRef]

Sato, H.

T. Okamoto, R. Ohmori, S. Hayakawa, I. Seo, H. Sato, “Ultraviolet-cured polymer micro-optical elements,” Opt. Rev. 4, 516–520 (1997).
[CrossRef]

Sato, S.

Scholl, M. S.

Seo, I.

T. Okamoto, R. Ohmori, S. Hayakawa, I. Seo, H. Sato, “Ultraviolet-cured polymer micro-optical elements,” Opt. Rev. 4, 516–520 (1997).
[CrossRef]

Stern, M. B.

Turlet, J.

Wakaki, M.

Wyatt, P. W.

Yoon, G. Y.

Appl. Opt. (11)

M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
[CrossRef] [PubMed]

N. F. Borrelli, D. L. Morse, R. H. Bellman, W. L. Morgan, “Photolytic technique for producing microlenses in photosensitive glass,” Appl. Opt. 24, 2520–2525 (1985).
[CrossRef] [PubMed]

N. F. Borrelli, D. L. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27, 476–479 (1988).
[CrossRef] [PubMed]

M. Oikawa, H. Nemoto, K. Hamanaka, E. Okuda, “High numerical aperture planar microlens with swelled structure,” Appl. Opt. 29, 4077–4080 (1990).
[CrossRef] [PubMed]

G. Y. Yoon, T. Jitsuno, M. Nakatsuka, S. Nakai, “Shack Hartmann wave-front measurement with a large F-number plastic microlens array,” Appl. Opt. 35, 188–192 (1996).
[CrossRef] [PubMed]

S. Lazare, J. Lopez, J. Turlet, M. Kufner, S. Kufner, P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly(methyl methacrylate) followed by styrene diffusion,” Appl. Opt. 35, 4471–4475 (1996).
[CrossRef] [PubMed]

S. Calixto, G. P. Padilla, “Micromirrors and microlenses fabricated on polymer materials by means of infrared radiation,” Appl. Opt. 35, 6126–6130 (1996).
[CrossRef] [PubMed]

S. Calixto, M. S. Scholl, “Relief optical microelements fabricated with dichromated gelatin,” Appl. Opt. 36, 2101–2106 (1997).
[CrossRef] [PubMed]

B. P. Keyworth, D. J. Corazza, J. N. McMullin, L. Mabbott, “Single-step fabrication of refractive microlens arrays,” Appl. Opt. 36, 2198–2202 (1997).
[CrossRef] [PubMed]

M. Wakaki, Y. Komachi, G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
[CrossRef]

S. Masuda, T. Nose, S. Sato, “Optical properties of an UV-cured liquid-crystal microlens array,” Appl. Opt. 37, 2067–2073 (1998).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

T. Okamoto, R. Ohmori, S. Hayakawa, I. Seo, H. Sato, “Ultraviolet-cured polymer micro-optical elements,” Opt. Rev. 4, 516–520 (1997).
[CrossRef]

Pure Appl. Opt. (1)

P. Pantelis, D. J. McCartney, “Polymer microlens arrays,” Pure Appl. Opt. 3, 103–108 (1994).
[CrossRef]

Other (1)

C. Croutxé-Barghorn, S. Calixto, D. J. Lougnot, “Self-developing photopolymer for the fabrication of relief micro-optical elements,” in Photosensitive Optical Materials and Devices, M. P. Andrews, ed., 2998, 222–231 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Fabrication process for microlens arrays: (a) The TEMA monomer is poured into a cell. (b) The liquid monomer is irradiated from above. (c) Annealing yields a convex microlens-array plate.

Fig. 2
Fig. 2

Photograph of a convex microlens array.

Fig. 3
Fig. 3

Experimental setup for measuring the focused spot pattern and the focal length of a microlens array. ND, neutral-density filter; PL, polarizer; L1, L2, and L3, lenses.

Fig. 4
Fig. 4

Array of light spots produced by a 400-µm-diameter microlens array with a 560-µm pitch.

Fig. 5
Fig. 5

Spot intensity profiles for 1-mm-diameter microlenses with a 4-mm pitch. The focal lengths are (a) 15 mm, (b) 50 mm, (c) 77 mm.

Fig. 6
Fig. 6

Surface profiles of microlenses used to obtain Fig. 5. (a), (b), and (c) correspond to Figs. 5(a), 5(b), and 5(c), respectively.

Fig. 7
Fig. 7

Variation of the spacing between the mask and the monomer: (a) 0 mm, (b) 2.3 mm, (c) 7.3 mm.

Fig. 8
Fig. 8

Focal length as a function of the mask spacing. The lens pitches are 2 mm (circles) and 4 mm (triangles) for 1-mm-diameter lens arrays.

Fig. 9
Fig. 9

Focal length versus UV fluence. The lens pitches are 2 mm (circles) and 4 mm (triangles) for 1-mm-diameter lens arrays. The initial irradiation time is 1 min.

Fig. 10
Fig. 10

Focal length versus UV irradiance for a 1-mm-diameter lens array with a 4-mm lens pitch. The UV fluence is ∼564 mJ/cm2.

Fig. 11
Fig. 11

f-number plotted versus the lens diameter D for different lens pitches: 1.1D (closed circles), 1.4D (closed triangles), 1.7D (open circles) and 2.0D (open triangles).

Metrics