Abstract

Refractive prismatic and off-axis micro-optical elements have been fabricated in gallium phosphide by mass-transport smoothing of multistep and binary preforms, respectively. A total optical efficiency of greater than 94% was measured for the prism, while diffraction-limited collimation and steering were demonstrated with the off-axis lens. A qualitative discussion of possible errors in binary preform etching and their effects on the surface figure is also included.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. L. Liau, D. Z. Tsang, J. N. Walpole, “Simple compact diode-laser/microlens packaging,” IEEE J. Quantum Electron. 33, 457–461 (1997).
    [CrossRef]
  2. Z. L. Liau, J. N. Walpole, L. J. Missaggia, D. E. Mull, “GaInAsP/InP buried-heterostructure surface-emitting diode laser with monolithic integrated bifocal microlens,” Appl. Phys. Lett. 56, 1219–1221 (1990).
    [CrossRef]
  3. Z. L. Liau, J. N. Walpole, D. E. Mull, C. L. Dennis, L. J. Missaggia, “Accurate fabrication of anamorphic microlenses and efficient collimation of tapered unstable-resonator diode lasers,” Appl. Phys. Lett. 64, 3368–3370 (1994).
    [CrossRef]
  4. Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
    [CrossRef]
  5. Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
    [CrossRef]
  6. Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
    [CrossRef]
  7. Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
    [CrossRef]
  8. J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
    [CrossRef]
  9. Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
    [CrossRef]
  10. M. Hagberg, B. Jonsson, A. G. Larsson, “Investigation of chemically assisted ion beam etching for the fabrication of vertical, ultrahigh quality facets in GaAs,” J. Vac. Sci. Technol. B 12, 555–566 (1994).
    [CrossRef]
  11. Z. L. Liau, D. W. Nam, R. G. Waarts, “Tolerances in microlens fabrication by multilevel etching and mass-transport smoothing,” Appl. Opt. 33, 7371–7376 (1994).
    [CrossRef] [PubMed]
  12. W. J. Grande, J. E. Johnson, C. L. Tang, “Characterization of etch rate and anisotropy in the temperature-controlled chemically assisted ion beam etching of GaAs,” J. Vac. Sci. Technol. B 8, 1075–1079 (1990).
    [CrossRef]
  13. C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida, C. Caneau, “Characterization of chemically assisted ion beam etching of InP,” J. Vac. Sci. Technol. B 12, 3317–3321 (1994).
    [CrossRef]

1997

Z. L. Liau, D. Z. Tsang, J. N. Walpole, “Simple compact diode-laser/microlens packaging,” IEEE J. Quantum Electron. 33, 457–461 (1997).
[CrossRef]

1995

Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
[CrossRef]

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

1994

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

M. Hagberg, B. Jonsson, A. G. Larsson, “Investigation of chemically assisted ion beam etching for the fabrication of vertical, ultrahigh quality facets in GaAs,” J. Vac. Sci. Technol. B 12, 555–566 (1994).
[CrossRef]

Z. L. Liau, J. N. Walpole, D. E. Mull, C. L. Dennis, L. J. Missaggia, “Accurate fabrication of anamorphic microlenses and efficient collimation of tapered unstable-resonator diode lasers,” Appl. Phys. Lett. 64, 3368–3370 (1994).
[CrossRef]

C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida, C. Caneau, “Characterization of chemically assisted ion beam etching of InP,” J. Vac. Sci. Technol. B 12, 3317–3321 (1994).
[CrossRef]

Z. L. Liau, D. W. Nam, R. G. Waarts, “Tolerances in microlens fabrication by multilevel etching and mass-transport smoothing,” Appl. Opt. 33, 7371–7376 (1994).
[CrossRef] [PubMed]

1990

W. J. Grande, J. E. Johnson, C. L. Tang, “Characterization of etch rate and anisotropy in the temperature-controlled chemically assisted ion beam etching of GaAs,” J. Vac. Sci. Technol. B 8, 1075–1079 (1990).
[CrossRef]

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

Z. L. Liau, J. N. Walpole, L. J. Missaggia, D. E. Mull, “GaInAsP/InP buried-heterostructure surface-emitting diode laser with monolithic integrated bifocal microlens,” Appl. Phys. Lett. 56, 1219–1221 (1990).
[CrossRef]

1989

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

1988

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Abraham, M. H.

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Adesida, I.

C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida, C. Caneau, “Characterization of chemically assisted ion beam etching of InP,” J. Vac. Sci. Technol. B 12, 3317–3321 (1994).
[CrossRef]

Caneau, C.

C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida, C. Caneau, “Characterization of chemically assisted ion beam etching of InP,” J. Vac. Sci. Technol. B 12, 3317–3321 (1994).
[CrossRef]

Dennis, C. L.

Z. L. Liau, J. N. Walpole, D. E. Mull, C. L. Dennis, L. J. Missaggia, “Accurate fabrication of anamorphic microlenses and efficient collimation of tapered unstable-resonator diode lasers,” Appl. Phys. Lett. 64, 3368–3370 (1994).
[CrossRef]

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Diadiuk, V.

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

DiNatale, W. F.

Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
[CrossRef]

Fields, R. A.

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Grande, W. J.

W. J. Grande, J. E. Johnson, C. L. Tang, “Characterization of etch rate and anisotropy in the temperature-controlled chemically assisted ion beam etching of GaAs,” J. Vac. Sci. Technol. B 8, 1075–1079 (1990).
[CrossRef]

Grundbacher, R.

C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida, C. Caneau, “Characterization of chemically assisted ion beam etching of InP,” J. Vac. Sci. Technol. B 12, 3317–3321 (1994).
[CrossRef]

Hagberg, M.

M. Hagberg, B. Jonsson, A. G. Larsson, “Investigation of chemically assisted ion beam etching for the fabrication of vertical, ultrahigh quality facets in GaAs,” J. Vac. Sci. Technol. B 12, 555–566 (1994).
[CrossRef]

Johnson, J. E.

W. J. Grande, J. E. Johnson, C. L. Tang, “Characterization of etch rate and anisotropy in the temperature-controlled chemically assisted ion beam etching of GaAs,” J. Vac. Sci. Technol. B 8, 1075–1079 (1990).
[CrossRef]

Jonsson, B.

M. Hagberg, B. Jonsson, A. G. Larsson, “Investigation of chemically assisted ion beam etching for the fabrication of vertical, ultrahigh quality facets in GaAs,” J. Vac. Sci. Technol. B 12, 555–566 (1994).
[CrossRef]

Kintzer, E. S.

Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
[CrossRef]

Larsson, A. G.

M. Hagberg, B. Jonsson, A. G. Larsson, “Investigation of chemically assisted ion beam etching for the fabrication of vertical, ultrahigh quality facets in GaAs,” J. Vac. Sci. Technol. B 12, 555–566 (1994).
[CrossRef]

Liau, Z. L.

Z. L. Liau, D. Z. Tsang, J. N. Walpole, “Simple compact diode-laser/microlens packaging,” IEEE J. Quantum Electron. 33, 457–461 (1997).
[CrossRef]

Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
[CrossRef]

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Z. L. Liau, D. W. Nam, R. G. Waarts, “Tolerances in microlens fabrication by multilevel etching and mass-transport smoothing,” Appl. Opt. 33, 7371–7376 (1994).
[CrossRef] [PubMed]

Z. L. Liau, J. N. Walpole, D. E. Mull, C. L. Dennis, L. J. Missaggia, “Accurate fabrication of anamorphic microlenses and efficient collimation of tapered unstable-resonator diode lasers,” Appl. Phys. Lett. 64, 3368–3370 (1994).
[CrossRef]

Z. L. Liau, J. N. Walpole, L. J. Missaggia, D. E. Mull, “GaInAsP/InP buried-heterostructure surface-emitting diode laser with monolithic integrated bifocal microlens,” Appl. Phys. Lett. 56, 1219–1221 (1990).
[CrossRef]

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Livas, J. C.

Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
[CrossRef]

Missaggia, L. J.

Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
[CrossRef]

Z. L. Liau, J. N. Walpole, D. E. Mull, C. L. Dennis, L. J. Missaggia, “Accurate fabrication of anamorphic microlenses and efficient collimation of tapered unstable-resonator diode lasers,” Appl. Phys. Lett. 64, 3368–3370 (1994).
[CrossRef]

Z. L. Liau, J. N. Walpole, L. J. Missaggia, D. E. Mull, “GaInAsP/InP buried-heterostructure surface-emitting diode laser with monolithic integrated bifocal microlens,” Appl. Phys. Lett. 56, 1219–1221 (1990).
[CrossRef]

Mull, D. E.

Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
[CrossRef]

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Z. L. Liau, J. N. Walpole, D. E. Mull, C. L. Dennis, L. J. Missaggia, “Accurate fabrication of anamorphic microlenses and efficient collimation of tapered unstable-resonator diode lasers,” Appl. Phys. Lett. 64, 3368–3370 (1994).
[CrossRef]

Z. L. Liau, J. N. Walpole, L. J. Missaggia, D. E. Mull, “GaInAsP/InP buried-heterostructure surface-emitting diode laser with monolithic integrated bifocal microlens,” Appl. Phys. Lett. 56, 1219–1221 (1990).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Nam, D. W.

Panepucci, R.

C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida, C. Caneau, “Characterization of chemically assisted ion beam etching of InP,” J. Vac. Sci. Technol. B 12, 3317–3321 (1994).
[CrossRef]

Swenson, J. S.

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Tang, C. L.

W. J. Grande, J. E. Johnson, C. L. Tang, “Characterization of etch rate and anisotropy in the temperature-controlled chemically assisted ion beam etching of GaAs,” J. Vac. Sci. Technol. B 8, 1075–1079 (1990).
[CrossRef]

Tsang, D. Z.

Z. L. Liau, D. Z. Tsang, J. N. Walpole, “Simple compact diode-laser/microlens packaging,” IEEE J. Quantum Electron. 33, 457–461 (1997).
[CrossRef]

Waarts, R. G.

Walpole, J. N.

Z. L. Liau, D. Z. Tsang, J. N. Walpole, “Simple compact diode-laser/microlens packaging,” IEEE J. Quantum Electron. 33, 457–461 (1997).
[CrossRef]

Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
[CrossRef]

Z. L. Liau, J. N. Walpole, D. E. Mull, C. L. Dennis, L. J. Missaggia, “Accurate fabrication of anamorphic microlenses and efficient collimation of tapered unstable-resonator diode lasers,” Appl. Phys. Lett. 64, 3368–3370 (1994).
[CrossRef]

Z. L. Liau, J. N. Walpole, L. J. Missaggia, D. E. Mull, “GaInAsP/InP buried-heterostructure surface-emitting diode laser with monolithic integrated bifocal microlens,” Appl. Phys. Lett. 56, 1219–1221 (1990).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Williamson, R. C.

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

Youtsey, C.

C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida, C. Caneau, “Characterization of chemically assisted ion beam etching of InP,” J. Vac. Sci. Technol. B 12, 3317–3321 (1994).
[CrossRef]

Zeiger, H. J.

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. L. Liau, J. N. Walpole, L. J. Missaggia, D. E. Mull, “GaInAsP/InP buried-heterostructure surface-emitting diode laser with monolithic integrated bifocal microlens,” Appl. Phys. Lett. 56, 1219–1221 (1990).
[CrossRef]

Z. L. Liau, J. N. Walpole, D. E. Mull, C. L. Dennis, L. J. Missaggia, “Accurate fabrication of anamorphic microlenses and efficient collimation of tapered unstable-resonator diode lasers,” Appl. Phys. Lett. 64, 3368–3370 (1994).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Large-numerical-aperture InP lenslets by mass transport,” Appl. Phys. Lett. 52, 1859–1861 (1988).
[CrossRef]

Z. L. Liau, V. Diadiuk, J. N. Walpole, D. E. Mull, “Gallium phosphide microlenses by mass transport,” Appl. Phys. Lett. 55, 97–99 (1989).
[CrossRef]

J. S. Swenson, R. A. Fields, M. H. Abraham, “Enhanced mass-transport smoothing of f/0.7 microlenses by use of sealed ampoules,” Appl. Phys. Lett. 66, 1304–1306 (1995).
[CrossRef]

Z. L. Liau, D. E. Mull, C. L. Dennis, R. C. Williamson, “Large-numerical-aperture microlens fabrication by one-step etching and mass-transport smoothing,” Appl. Phys. Lett. 64, 1484–1486 (1994).
[CrossRef]

IEEE J. Quantum Electron.

Z. L. Liau, D. Z. Tsang, J. N. Walpole, “Simple compact diode-laser/microlens packaging,” IEEE J. Quantum Electron. 33, 457–461 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. L. Liau, J. N. Walpole, J. C. Livas, E. S. Kintzer, D. E. Mull, L. J. Missaggia, W. F. DiNatale, “Fabrication of two-sided anamorphic microlenses and direct coupling of tapered high-power diode laser to single-mode fiber,” IEEE Photon. Technol. Lett. 7, 1315–1317 (1995).
[CrossRef]

J. Appl. Phys.

Z. L. Liau, H. J. Zeiger, “Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation,” J. Appl. Phys. 67, 2434–2440 (1990).
[CrossRef]

J. Vac. Sci. Technol. B

M. Hagberg, B. Jonsson, A. G. Larsson, “Investigation of chemically assisted ion beam etching for the fabrication of vertical, ultrahigh quality facets in GaAs,” J. Vac. Sci. Technol. B 12, 555–566 (1994).
[CrossRef]

W. J. Grande, J. E. Johnson, C. L. Tang, “Characterization of etch rate and anisotropy in the temperature-controlled chemically assisted ion beam etching of GaAs,” J. Vac. Sci. Technol. B 8, 1075–1079 (1990).
[CrossRef]

C. Youtsey, R. Grundbacher, R. Panepucci, I. Adesida, C. Caneau, “Characterization of chemically assisted ion beam etching of InP,” J. Vac. Sci. Technol. B 12, 3317–3321 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Stylus profilometer data for a GaP biprism preform before transport.

Fig. 2
Fig. 2

GaP biprism surface after transport: (a) Stylus profilometer data and (b) scanning white-light interferometric microscope data.

Fig. 3
Fig. 3

Diagram of the experimental setup for testing the beam steering of a GaP biprism with a normally incident He–Ne laser beam.

Fig. 4
Fig. 4

Far-field intensity data for a He–Ne beam steered to three locations by a GaP biprism.

Fig. 5
Fig. 5

Plot of the simulated smoothing of a binary preform for use in generating an off-axis GaP lens (f/1.5, 200-µm diameter, 2.9° steering angle). The preform is shown in cross section. The square-edged solid curve represents the etched preform; the dashed curve is the resultant surface after simulated mass transport.

Fig. 6
Fig. 6

Diagram of a GaP off-axis lens (f/2.0, 150-µm diameter, 2.9° steering angle). The square-edged solid curve represents the theoretical etched preform; the smooth solid curve represents the measured surface profile; the dashed curve represents the theoretical prediction including the approximate effect of uniform undercutting of the preform.

Fig. 7
Fig. 7

Far-field intensity data for a GaP off-axis lens.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

zt=-γ 4zx4,
γανN0DkT,
zx, 0=n=0 An sin2nπxΛ,
zx, t=n=0 An exp-t/τnsin2nπxΛ,
τn=1γΛ2nπ4.

Metrics