Abstract

A new method of Monte Carlo simulation has been developed to simulate the spatial distribution of photon density of converging laser beams propagating in a turbid medium such as the phantom of biological tissue. This method can be used to obtain steady-state light distribution in the tissue phantom for a continuous-wave laser beam. We have calculated the steady-state distribution of the photon density and found important features that are uniquely related to the propagation of the converging beams in the tissue phantom.

© 1999 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of the rough-interface effect on a converging light beam propagating in a skin tissue phantom

Jun Q. Lu, Xin-Hua Hu, and Ke Dong
Appl. Opt. 39(31) 5890-5897 (2000)

Multicanonical Monte-Carlo simulations of light propagation in biological media

A. Bilenca, A. Desjardins, B. E. Bouma, and G. J. Tearney
Opt. Express 13(24) 9822-9833 (2005)

Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties

Guobin Ma, Jean-Fran├žois Delorme, Pascal Gallant, and David A. Boas
Appl. Opt. 46(10) 1686-1692 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription