Abstract

The polarization properties of coated and uncoated parallel-slab multireflection beam splitters are investigated. In a recent study [Opt. Lett. 21, 1709 (1996)] it was shown that the parallel-slab beam splitter is a basic optical component of the parallel-slab division-of-amplitude photopolarimeter. The ellipsometric parameters and the fractional powers for multireflected components generated by this system are analyzed. Interesting new observations with respect to the polarization properties at the Brewster angle of incidence and the distribution of powers among the multireflected components are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), Chap. 9.
  2. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North Holand, Amsterdam, 1977), Chap. 4.
  3. A. M. El-Saba, R. M. A. Azzam, M. A. G. Abushagur, “Parallel-slab division-of-amplitude photopolarimeter,” Opt. Lett. 21, 1709–1711 (1996).
    [CrossRef] [PubMed]
  4. R. M. A. Azzam, A. M. El-Saba, M. A. G. Abushagur, “Spectrophotopolarimeter based on multiple reflections inside a dielectric slab,” Thin Solid Films 313–314, 53–59 (1998).
    [CrossRef]
  5. M. M. Rajadhyaksha, R. H. Webb, “Plate beamsplitter to produce multiple equal-intensity beams,” Eng. Lab. Notes in Opt. Photon. News 6(5) (1995).
  6. O. S. Heaven, Optical Properties of Solid Thin Films (Dover, New York, 1965).
  7. A. M. El-Saba, “Parallel-slab multi-reflection photopolarimeters,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 1996).
  8. A. M. El-Saba, R. M. A. Azzam, M. A. G. Abushagur, “Performance optimization and light-beam-deviation analysis of the parallel-slab division-of-amplitude photopolarimeter,” Appl. Opt. 38, 2829–2836 (1999).
    [CrossRef]

1999 (1)

1998 (1)

R. M. A. Azzam, A. M. El-Saba, M. A. G. Abushagur, “Spectrophotopolarimeter based on multiple reflections inside a dielectric slab,” Thin Solid Films 313–314, 53–59 (1998).
[CrossRef]

1996 (1)

1995 (1)

M. M. Rajadhyaksha, R. H. Webb, “Plate beamsplitter to produce multiple equal-intensity beams,” Eng. Lab. Notes in Opt. Photon. News 6(5) (1995).

Abushagur, M. A. G.

Azzam, R. M. A.

A. M. El-Saba, R. M. A. Azzam, M. A. G. Abushagur, “Performance optimization and light-beam-deviation analysis of the parallel-slab division-of-amplitude photopolarimeter,” Appl. Opt. 38, 2829–2836 (1999).
[CrossRef]

R. M. A. Azzam, A. M. El-Saba, M. A. G. Abushagur, “Spectrophotopolarimeter based on multiple reflections inside a dielectric slab,” Thin Solid Films 313–314, 53–59 (1998).
[CrossRef]

A. M. El-Saba, R. M. A. Azzam, M. A. G. Abushagur, “Parallel-slab division-of-amplitude photopolarimeter,” Opt. Lett. 21, 1709–1711 (1996).
[CrossRef] [PubMed]

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North Holand, Amsterdam, 1977), Chap. 4.

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North Holand, Amsterdam, 1977), Chap. 4.

El-Saba, A. M.

A. M. El-Saba, R. M. A. Azzam, M. A. G. Abushagur, “Performance optimization and light-beam-deviation analysis of the parallel-slab division-of-amplitude photopolarimeter,” Appl. Opt. 38, 2829–2836 (1999).
[CrossRef]

R. M. A. Azzam, A. M. El-Saba, M. A. G. Abushagur, “Spectrophotopolarimeter based on multiple reflections inside a dielectric slab,” Thin Solid Films 313–314, 53–59 (1998).
[CrossRef]

A. M. El-Saba, R. M. A. Azzam, M. A. G. Abushagur, “Parallel-slab division-of-amplitude photopolarimeter,” Opt. Lett. 21, 1709–1711 (1996).
[CrossRef] [PubMed]

A. M. El-Saba, “Parallel-slab multi-reflection photopolarimeters,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 1996).

Heaven, O. S.

O. S. Heaven, Optical Properties of Solid Thin Films (Dover, New York, 1965).

Hecht, E.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), Chap. 9.

Rajadhyaksha, M. M.

M. M. Rajadhyaksha, R. H. Webb, “Plate beamsplitter to produce multiple equal-intensity beams,” Eng. Lab. Notes in Opt. Photon. News 6(5) (1995).

Webb, R. H.

M. M. Rajadhyaksha, R. H. Webb, “Plate beamsplitter to produce multiple equal-intensity beams,” Eng. Lab. Notes in Opt. Photon. News 6(5) (1995).

Zajac, A.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), Chap. 9.

Appl. Opt. (1)

Eng. Lab. Notes in Opt. Photon. News (1)

M. M. Rajadhyaksha, R. H. Webb, “Plate beamsplitter to produce multiple equal-intensity beams,” Eng. Lab. Notes in Opt. Photon. News 6(5) (1995).

Opt. Lett. (1)

Thin Solid Films (1)

R. M. A. Azzam, A. M. El-Saba, M. A. G. Abushagur, “Spectrophotopolarimeter based on multiple reflections inside a dielectric slab,” Thin Solid Films 313–314, 53–59 (1998).
[CrossRef]

Other (4)

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1979), Chap. 9.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North Holand, Amsterdam, 1977), Chap. 4.

O. S. Heaven, Optical Properties of Solid Thin Films (Dover, New York, 1965).

A. M. El-Saba, “Parallel-slab multi-reflection photopolarimeters,” Ph.D. dissertation (University of Alabama in Huntsville, Huntsville, Ala., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Diagram of an uncoated PSMRBS.

Fig. 2
Fig. 2

EP ψ n (n = 0, 1, 2, 3) for the first four reflected components as functions of ϕ0 obtained by use of an uncoated SiO2–Ag parallel slab at λ = 633 nm.

Fig. 3
Fig. 3

EP Δ n (n = 0, 1, 2, 3) for the first four reflected components as functions of ϕ0 obtained by use of an uncoated SiO2–Ag parallel slab at λ = 633 nm.

Fig. 4
Fig. 4

Average fractional power R n (n = 0, 1, 2, 3) for the first four reflected components as functions of ϕ0 obtained by use of an uncoated SiO2–Ag parallel slab at λ = 633 nm.

Fig. 5
Fig. 5

Total average power contained in the first four reflected components R 4T as a function of ϕ0 obtained by use of an uncoated SiO2–Ag parallel slab at λ = 633 nm.

Fig. 6
Fig. 6

Average fractional power R n (n = 0, 1, 2, 3) for the first four reflected components as functions of ϕ0 obtained by use of an uncoated ZnS–Ag parallel slab at λ = 633 nm.

Fig. 7
Fig. 7

Total average power contained in the first four reflected components R 4T as functions of ϕ0 obtained by use of an uncoated ZnS–Ag parallel slab at λ = 633 nm.

Fig. 8
Fig. 8

Diagram of a UCPSMRBS.

Fig. 9
Fig. 9

EP ψ n (n = 0, 1, 2, 3) for the first four reflected components as functions of ϕ0 obtained by use of a parallel slab coated with ZnS–SiO2–Ag at λ = 633 nm. The thickness of the ZnS thin-film coating is 30 nm.

Fig. 10
Fig. 10

EP Δ n (n = 0, 1, 2, 3) for the first four reflected components as functions of ϕ0 obtained by use of a parallel slab coated with ZnS–SiO2–Ag at λ = 633 nm. The thickness of the ZnS thin-film coating is 30 nm.

Fig. 11
Fig. 11

Average fractional power R n (n = 0, 1, 2, 3) for the first four reflected components as a function of ϕ0 obtained by use of a parallel slab coated with ZnS–SiO2–Ag at λ = 633 nm. The thickness of the ZnS thin-film coating is 30 nm.

Fig. 12
Fig. 12

Total average power contained the first four reflected components R 4T as a function of ϕ0 obtained by use of a parallel slab coated with ZnS–SiO2–Ag at λ = 633 nm. The thickness of the ZnS thin-film coating is 30 nm.

Fig. 13
Fig. 13

EP ψ n (n = 0, 1, 2, 3) for the first four reflected components as functions of ϕ0 obtained by use of a parallel slab coated with ZnS–SiO2–Ag at λ = 633 nm. The thickness of the ZnS thin-film coating is 140 nm.

Fig. 14
Fig. 14

EP Δ n (n = 0, 1, 2, 3) for the first four reflected components as functions of ϕ0 obtained by use of a parallel slab coated with ZnS–SiO2–Ag at λ = 633 nm. The thickness of the ZnS thin-film coating is 140 nm.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

rp=|rp|expjδrp, rs=|rs|expjδrs,
ρr=rp/rs=tanψexpjΔ,
tanψ=|rp/rs|,
Δ=δrp-δrs.
Pν0=r01ν,  ν=p, s.
Pνn=t01νt10νr10νn-1r12νn,  ν=p, s,  n>0.
r01p=tanϕ0-ϕ1/tanϕ0+ϕ1, r01s=-sinϕ0-ϕ1/sinϕ0+ϕ1, t01p=2 sin ϕ0 cos ϕ0/sinϕ0+ϕ1cosϕ0-ϕ1, t01s=2 sin ϕ1 cos ϕ0/sinϕ0+ϕ1.
ρn=Ppn/Psn,  n0.
ψn=tan-1|ρn|,
Δn=argρn.
Rn=1/2|Ppn|2+|Psn|2,  n0.
RMT=n=0M Rn.
Pp1=t01pt10pr12p.
Pp2=Pp3=Pp4==Ppn=0, ψ2=ψ3=ψ4==ψn=0.

Metrics