Abstract

The spectral absorptance of the 3.4-µm band of methane, ethane, propane, and butane has been measured with a Fourier transform infrared spectrometer over a range of temperatures from 296 to 900 K. The measurements were made at a 4-cm-1 resolution and integrated over the entire band to give the total absorptance. The total absorptance is found to behave in such a way that it can be correlated by a combination of algebraic expressions that depend on the gas temperature and concentration. Average discrepancies between the correlations and the measurements are less than 4%, with maximum differences of no greater than 17%. In addition, the correlations presented here for methane are shown to be in good agreement with established models. Expressions given for the integrated intensity of each gas show an inverse dependence on temperature, reflecting the associated change in density.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Brosmer, C. L. Tien, “Radiative energy blockage in large pool fires,” Combust. Sci. Technol. 51, 21–37 (1987).
    [CrossRef]
  2. M. A. Brosmer, C. L. Tien, “Infrared radiation properties of methane at elevated temperatures,” J. Quant. Spectrosc. Radiat. Transfer 33, 521–532 (1985).
    [CrossRef]
  3. S. P. Fuss, O. A. Ezekoye, M. J. Hall, “The absorptance of infrared radiation by methane at elevated temperatures,” J. Heat Transfer 118, 918–923 (1996).
    [CrossRef]
  4. D. K. Edwards, W. A. Menard, “Correlation for band absorption by methane and carbon dioxide,” Appl. Opt. 3, 847–852 (1964).
    [CrossRef]
  5. D. K. Edwards, A. Balakrishnan, “Thermal radiation by combustion gases,” Int. J. Heat Mass Transfer 16, 25–39 (1973).
    [CrossRef]
  6. C. L. Tien, J. E. Lowder, “A correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 9, 698–701 (1966).
    [CrossRef]
  7. R. D. Cess, S. N. Tiwari, “Infrared radiative energy transfer in gases,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1972), Vol. 8, pp. 229–284.
    [CrossRef]
  8. C. L. Tien, G. R. Ling, “On a simple correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 12, 1179–1181 (1969).
    [CrossRef]
  9. J. D. Felske, C. L. Tien, “A theoretical closed form expression for the total band absorptance of infrared radiating gases,” Int. J. Heat Mass Transfer 17, 155–158 (1974).
    [CrossRef]
  10. D. E. Burch, D. Williams, “Total absorptance of carbon monoxide and methane in the infrared,” Appl. Opt. 1, 587–594 (1962).
    [CrossRef]
  11. R. H. C. Lee, J. Happel, “Thermal radiation of methane gas,” I&EC Fund. 3, 167–176 (1964).
    [CrossRef]
  12. L. D. Gray, S. S. Penner, “Approximate band absorption calculations for methane,” J. Quant. Spectrosc. Radiat. Transfer 5, 611–620 (1965).
    [CrossRef]
  13. S. S. Penner, P. Varanasi, “Approximate band absorption and total emissivity calculations for CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 799–806 (1964).
    [CrossRef]
  14. W. Li, T. W. Tong, D. Dobranich, L. A. Gritzo, “A combined narrow- and wide-band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO,” J. Quant. Spectrosc. Radiat. Transfer 54, 961–970 (1995).
    [CrossRef]
  15. C. P. Rinsland, G. A. Harvey, V. M. Devi, K. B. Thakur, J. S. Levine, A. H. Smith, “Q branches of the ν7 fundamental of ethane (C2H6): integrated intensity measurements for atmospheric measurement applications,” Appl. Opt. 25, 2872–2873 (1986).
    [CrossRef] [PubMed]
  16. C. P. Rinsland, J. S. Levine, “Identification and measurement of atmospheric ethane (C2H6) from a 1951 infrared solar spectrum,” Appl. Opt. 25, 4522–4525 (1986).
    [CrossRef] [PubMed]
  17. A. M. Thorndike, “The experimental determination of the intensities of infra-red absorption bands. III. Carbon dioxide, methane, and ethane,” J. Chem. Phys. 15, 868–874 (1947).
    [CrossRef]
  18. E. Finkman, A. Goldman, U. P. Oppenheim, “Integrated intensity of 3.3 µ band of methane,” J. Opt. Soc. Am. 57, 1130–1131 (1967).
    [CrossRef]
  19. E. B. Wilson, A. J. Wells, “The experimental determination of the intensities of infra-red absorption bands: I. Theory of the method,” J. Chem. Phys. 14, 578–580 (1946).
    [CrossRef]
  20. S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959).
  21. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1951).
  22. D. K. Edwards, W. A. Menard, “Comparison of models for correlation of total band absorption,” Appl. Opt. 3, 621–625 (1964).
    [CrossRef]
  23. D. K. Edwards, “Molecular gas band radiation,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1976), Vol. 12, pp. 116–195.
  24. D. E. Burch, E. B. Singleton, D. Williams, “Absorption line broadening in the infrared,” Appl. Opt. 1, 359–363 (1962).
    [CrossRef]
  25. W. A. Menard, “Band and line structure models for correlation of gaseous radiation,” M.S. thesis (University of California, Los Angeles, Calif., 1963).
  26. C. L. Tien, “Thermal radiation properties of gases,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1968), Vol. 5, pp. 254–324.
  27. D. K. Edwards, W. Sun, “Correlations for absorption by the 9.4 and 10.4 micron CO2 bands,” Appl. Opt. 3, 1501–1502 (1964).
    [CrossRef]
  28. D. K. Edwards, B. J. Flornes, L. K. Glassen, W. Sun, “Correlation of absorption by water vapor at temperatures from 300 to 1000 K,” Appl. Opt. 4, 715–721 (1965).
    [CrossRef]

1996 (1)

S. P. Fuss, O. A. Ezekoye, M. J. Hall, “The absorptance of infrared radiation by methane at elevated temperatures,” J. Heat Transfer 118, 918–923 (1996).
[CrossRef]

1995 (1)

W. Li, T. W. Tong, D. Dobranich, L. A. Gritzo, “A combined narrow- and wide-band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO,” J. Quant. Spectrosc. Radiat. Transfer 54, 961–970 (1995).
[CrossRef]

1987 (1)

M. A. Brosmer, C. L. Tien, “Radiative energy blockage in large pool fires,” Combust. Sci. Technol. 51, 21–37 (1987).
[CrossRef]

1986 (2)

1985 (1)

M. A. Brosmer, C. L. Tien, “Infrared radiation properties of methane at elevated temperatures,” J. Quant. Spectrosc. Radiat. Transfer 33, 521–532 (1985).
[CrossRef]

1974 (1)

J. D. Felske, C. L. Tien, “A theoretical closed form expression for the total band absorptance of infrared radiating gases,” Int. J. Heat Mass Transfer 17, 155–158 (1974).
[CrossRef]

1973 (1)

D. K. Edwards, A. Balakrishnan, “Thermal radiation by combustion gases,” Int. J. Heat Mass Transfer 16, 25–39 (1973).
[CrossRef]

1969 (1)

C. L. Tien, G. R. Ling, “On a simple correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 12, 1179–1181 (1969).
[CrossRef]

1967 (1)

1966 (1)

C. L. Tien, J. E. Lowder, “A correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 9, 698–701 (1966).
[CrossRef]

1965 (2)

L. D. Gray, S. S. Penner, “Approximate band absorption calculations for methane,” J. Quant. Spectrosc. Radiat. Transfer 5, 611–620 (1965).
[CrossRef]

D. K. Edwards, B. J. Flornes, L. K. Glassen, W. Sun, “Correlation of absorption by water vapor at temperatures from 300 to 1000 K,” Appl. Opt. 4, 715–721 (1965).
[CrossRef]

1964 (5)

1962 (2)

1947 (1)

A. M. Thorndike, “The experimental determination of the intensities of infra-red absorption bands. III. Carbon dioxide, methane, and ethane,” J. Chem. Phys. 15, 868–874 (1947).
[CrossRef]

1946 (1)

E. B. Wilson, A. J. Wells, “The experimental determination of the intensities of infra-red absorption bands: I. Theory of the method,” J. Chem. Phys. 14, 578–580 (1946).
[CrossRef]

Balakrishnan, A.

D. K. Edwards, A. Balakrishnan, “Thermal radiation by combustion gases,” Int. J. Heat Mass Transfer 16, 25–39 (1973).
[CrossRef]

Brosmer, M. A.

M. A. Brosmer, C. L. Tien, “Radiative energy blockage in large pool fires,” Combust. Sci. Technol. 51, 21–37 (1987).
[CrossRef]

M. A. Brosmer, C. L. Tien, “Infrared radiation properties of methane at elevated temperatures,” J. Quant. Spectrosc. Radiat. Transfer 33, 521–532 (1985).
[CrossRef]

Burch, D. E.

Cess, R. D.

R. D. Cess, S. N. Tiwari, “Infrared radiative energy transfer in gases,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1972), Vol. 8, pp. 229–284.
[CrossRef]

Devi, V. M.

Dobranich, D.

W. Li, T. W. Tong, D. Dobranich, L. A. Gritzo, “A combined narrow- and wide-band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO,” J. Quant. Spectrosc. Radiat. Transfer 54, 961–970 (1995).
[CrossRef]

Edwards, D. K.

Ezekoye, O. A.

S. P. Fuss, O. A. Ezekoye, M. J. Hall, “The absorptance of infrared radiation by methane at elevated temperatures,” J. Heat Transfer 118, 918–923 (1996).
[CrossRef]

Felske, J. D.

J. D. Felske, C. L. Tien, “A theoretical closed form expression for the total band absorptance of infrared radiating gases,” Int. J. Heat Mass Transfer 17, 155–158 (1974).
[CrossRef]

Finkman, E.

Flornes, B. J.

Fuss, S. P.

S. P. Fuss, O. A. Ezekoye, M. J. Hall, “The absorptance of infrared radiation by methane at elevated temperatures,” J. Heat Transfer 118, 918–923 (1996).
[CrossRef]

Glassen, L. K.

Goldman, A.

Gray, L. D.

L. D. Gray, S. S. Penner, “Approximate band absorption calculations for methane,” J. Quant. Spectrosc. Radiat. Transfer 5, 611–620 (1965).
[CrossRef]

Gritzo, L. A.

W. Li, T. W. Tong, D. Dobranich, L. A. Gritzo, “A combined narrow- and wide-band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO,” J. Quant. Spectrosc. Radiat. Transfer 54, 961–970 (1995).
[CrossRef]

Hall, M. J.

S. P. Fuss, O. A. Ezekoye, M. J. Hall, “The absorptance of infrared radiation by methane at elevated temperatures,” J. Heat Transfer 118, 918–923 (1996).
[CrossRef]

Happel, J.

R. H. C. Lee, J. Happel, “Thermal radiation of methane gas,” I&EC Fund. 3, 167–176 (1964).
[CrossRef]

Harvey, G. A.

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1951).

Lee, R. H. C.

R. H. C. Lee, J. Happel, “Thermal radiation of methane gas,” I&EC Fund. 3, 167–176 (1964).
[CrossRef]

Levine, J. S.

Li, W.

W. Li, T. W. Tong, D. Dobranich, L. A. Gritzo, “A combined narrow- and wide-band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO,” J. Quant. Spectrosc. Radiat. Transfer 54, 961–970 (1995).
[CrossRef]

Ling, G. R.

C. L. Tien, G. R. Ling, “On a simple correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 12, 1179–1181 (1969).
[CrossRef]

Lowder, J. E.

C. L. Tien, J. E. Lowder, “A correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 9, 698–701 (1966).
[CrossRef]

Menard, W. A.

Oppenheim, U. P.

Penner, S. S.

L. D. Gray, S. S. Penner, “Approximate band absorption calculations for methane,” J. Quant. Spectrosc. Radiat. Transfer 5, 611–620 (1965).
[CrossRef]

S. S. Penner, P. Varanasi, “Approximate band absorption and total emissivity calculations for CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 799–806 (1964).
[CrossRef]

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959).

Rinsland, C. P.

Singleton, E. B.

Smith, A. H.

Sun, W.

Thakur, K. B.

Thorndike, A. M.

A. M. Thorndike, “The experimental determination of the intensities of infra-red absorption bands. III. Carbon dioxide, methane, and ethane,” J. Chem. Phys. 15, 868–874 (1947).
[CrossRef]

Tien, C. L.

M. A. Brosmer, C. L. Tien, “Radiative energy blockage in large pool fires,” Combust. Sci. Technol. 51, 21–37 (1987).
[CrossRef]

M. A. Brosmer, C. L. Tien, “Infrared radiation properties of methane at elevated temperatures,” J. Quant. Spectrosc. Radiat. Transfer 33, 521–532 (1985).
[CrossRef]

J. D. Felske, C. L. Tien, “A theoretical closed form expression for the total band absorptance of infrared radiating gases,” Int. J. Heat Mass Transfer 17, 155–158 (1974).
[CrossRef]

C. L. Tien, G. R. Ling, “On a simple correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 12, 1179–1181 (1969).
[CrossRef]

C. L. Tien, J. E. Lowder, “A correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 9, 698–701 (1966).
[CrossRef]

C. L. Tien, “Thermal radiation properties of gases,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1968), Vol. 5, pp. 254–324.

Tiwari, S. N.

R. D. Cess, S. N. Tiwari, “Infrared radiative energy transfer in gases,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1972), Vol. 8, pp. 229–284.
[CrossRef]

Tong, T. W.

W. Li, T. W. Tong, D. Dobranich, L. A. Gritzo, “A combined narrow- and wide-band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO,” J. Quant. Spectrosc. Radiat. Transfer 54, 961–970 (1995).
[CrossRef]

Varanasi, P.

S. S. Penner, P. Varanasi, “Approximate band absorption and total emissivity calculations for CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 799–806 (1964).
[CrossRef]

Wells, A. J.

E. B. Wilson, A. J. Wells, “The experimental determination of the intensities of infra-red absorption bands: I. Theory of the method,” J. Chem. Phys. 14, 578–580 (1946).
[CrossRef]

Williams, D.

Wilson, E. B.

E. B. Wilson, A. J. Wells, “The experimental determination of the intensities of infra-red absorption bands: I. Theory of the method,” J. Chem. Phys. 14, 578–580 (1946).
[CrossRef]

Appl. Opt. (8)

Combust. Sci. Technol. (1)

M. A. Brosmer, C. L. Tien, “Radiative energy blockage in large pool fires,” Combust. Sci. Technol. 51, 21–37 (1987).
[CrossRef]

I&EC Fund. (1)

R. H. C. Lee, J. Happel, “Thermal radiation of methane gas,” I&EC Fund. 3, 167–176 (1964).
[CrossRef]

Int. J. Heat Mass Transfer (4)

D. K. Edwards, A. Balakrishnan, “Thermal radiation by combustion gases,” Int. J. Heat Mass Transfer 16, 25–39 (1973).
[CrossRef]

C. L. Tien, J. E. Lowder, “A correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 9, 698–701 (1966).
[CrossRef]

C. L. Tien, G. R. Ling, “On a simple correlation for total band absorptance of radiating gases,” Int. J. Heat Mass Transfer 12, 1179–1181 (1969).
[CrossRef]

J. D. Felske, C. L. Tien, “A theoretical closed form expression for the total band absorptance of infrared radiating gases,” Int. J. Heat Mass Transfer 17, 155–158 (1974).
[CrossRef]

J. Chem. Phys. (2)

E. B. Wilson, A. J. Wells, “The experimental determination of the intensities of infra-red absorption bands: I. Theory of the method,” J. Chem. Phys. 14, 578–580 (1946).
[CrossRef]

A. M. Thorndike, “The experimental determination of the intensities of infra-red absorption bands. III. Carbon dioxide, methane, and ethane,” J. Chem. Phys. 15, 868–874 (1947).
[CrossRef]

J. Heat Transfer (1)

S. P. Fuss, O. A. Ezekoye, M. J. Hall, “The absorptance of infrared radiation by methane at elevated temperatures,” J. Heat Transfer 118, 918–923 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (4)

M. A. Brosmer, C. L. Tien, “Infrared radiation properties of methane at elevated temperatures,” J. Quant. Spectrosc. Radiat. Transfer 33, 521–532 (1985).
[CrossRef]

L. D. Gray, S. S. Penner, “Approximate band absorption calculations for methane,” J. Quant. Spectrosc. Radiat. Transfer 5, 611–620 (1965).
[CrossRef]

S. S. Penner, P. Varanasi, “Approximate band absorption and total emissivity calculations for CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 799–806 (1964).
[CrossRef]

W. Li, T. W. Tong, D. Dobranich, L. A. Gritzo, “A combined narrow- and wide-band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO,” J. Quant. Spectrosc. Radiat. Transfer 54, 961–970 (1995).
[CrossRef]

Other (6)

R. D. Cess, S. N. Tiwari, “Infrared radiative energy transfer in gases,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1972), Vol. 8, pp. 229–284.
[CrossRef]

D. K. Edwards, “Molecular gas band radiation,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1976), Vol. 12, pp. 116–195.

W. A. Menard, “Band and line structure models for correlation of gaseous radiation,” M.S. thesis (University of California, Los Angeles, Calif., 1963).

C. L. Tien, “Thermal radiation properties of gases,” in Advances in Heat Transfer, T. F. Irvine, J. P. Hartnett, eds. (Academic, New York, 1968), Vol. 5, pp. 254–324.

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, Reading, Mass., 1959).

G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1951).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Spectral absorptance at T = 296 K of methane, ethane, propane, and butane at a partial pressure of P HC = 0.04 atm. The path length is 5 cm.

Fig. 3
Fig. 3

Total absorptance of methane and propane at T = 296 K, P HC = 0.011 atm.

Fig. 4
Fig. 4

Total absorptance of methane. The open symbols represent measurements; the solid curves are the correlations.

Fig. 5
Fig. 5

Comparison of the proposed correlation for methane with existing models at T = 296 K. The open symbols distinguish smooth functions and do not represent individual data points.

Fig. 6
Fig. 6

Comparison of the proposed correlation for methane with existing models at T = 500 K. The open symbols distinguish smooth functions and do not represent individual data points.

Fig. 7
Fig. 7

Comparison of the proposed correlation for methane with existing models at T = 700 K. The open symbols distinguish smooth functions and do not represent individual data points.

Fig. 8
Fig. 8

Comparison of the proposed correlation for methane with existing models at T = 900 K. The open symbols distinguish smooth functions and do not represent individual data points.

Fig. 9
Fig. 9

Total absorptance of ethane. The open symbols represent measurements; the solid curves are the correlations.

Fig. 10
Fig. 10

Total absorptance of propane. The open symbols represent measurements; the solid curves are the correlations.

Fig. 11
Fig. 11

Total absorptance of butane. The open symbols represent measurements; the solid curves are the correlations.

Fig. 12
Fig. 12

Total absorptance of methane, ethane, propane, and butane as a function of molar path length at T = 296 K.

Fig. 13
Fig. 13

Total absorptance of methane, ethane, propane, and butane as a function of molar path length at T = 900 K.

Fig. 14
Fig. 14

Total absorptance of methane, ethane, propane, and butane as a function of bond path length at T = 296 K.

Fig. 15
Fig. 15

Total absorptance of methane, ethane, propane, and butane as a function of bond path length at T = 900 K.

Tables (5)

Tables Icon

Table 1 Integration Wave-Number Limits Used for Individual Gases in Eq. (2)

Tables Icon

Table 2 Experimental Conditions

Tables Icon

Table 3 Range of Molar Path Lengths, X (mol/m2), for Absorption Regions of the Exponential Wideband Modela

Tables Icon

Table 4 Parameters for the Calculation Integrated Intensity Using Eq. (12)

Tables Icon

Table 5 Comparison of Integrated Intensity Values at T = 273 K with Values Reported Previously

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

aω=1-IωI0,ω,
Atot=ω1ω21-IωI0,ωdω,
X=PHC kPa 1000 mol/kmol L mR¯ kJ/kmol K T K.
Atot=147.0T2960.77X0.6955T/2960.15,  X0.12,
Atot=63.3 exp0.42T296X0.466 exp0.07T/296, 0.12<X<Xmax.
Atot=1261.5X0.94,  X<0.05,
Atot=278.0T2960.275+161.7T2960.34 log10X, 0.05XXmax.
Atot=1205.7X0.858,  X<0.05,
Atot=276.2T2960.234+147.9T2960.291 log10 X, 0.05XXmax.
Atot=870.4X0.74,  X0.03,
Atot=260.2 exp0.13T296+126.7 exp0.16T296×log10X,  0.03XXmax.
α= kωdω,
I=I0 exp-kωpL.
B=1pL  lnI0,ωIωdω,
α=limBpL0.
αT=α0T0/Tn,

Metrics