Abstract

Highlights are due to specular reflection and cause the lustrous or mirrorlike appearance of many material surfaces. We investigated in detail the structure of highlight patterns that are due to material surface roughness. We interpret results in terms of a simple model of a random Gaussian surface. The model’s prediction corresponds with the microscopic measurement within a factor of 2. The method allows one to rank generally the roughness of the surfaces of the fruit samples by purely optical means. This simple procedure for estimating surface roughness from images has implications for visual perception and graphic rendering.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Evans, Eye, Film, and Camera in Color Photography (Wiley, New York, 1959), Chaps. 2–4.
  2. R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307–316 (1981).
    [CrossRef]
  3. S. A. Shafer, “Using color to separate reflection components,” Color Res. Appl. 10, 210–218 (1985).
    [CrossRef]
  4. R. S. Hunter, The Measurement of Appearance (Wiley, New York, 1975), Chaps. 1–6.
  5. W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Wiley, New York, 1966), Chaps. 1–3.
  6. G. Healey, T. O. Binford, “The role and use of color in a general vision system,” in DARPA Image Understanding (IUS) Workshop, L. S. Bauman, ed., (Morgan Kaufmann, Los Altos, Calif., 1987), pp. 599–613.
  7. G. J. Klinker, S. A. Shafer, T. Kanade, “Measurement of gloss from color images,” in Intersociety Color Council (ISCC) 87 Conference on Appearance (ISCC, Virginia, 1987), pp. 9–13.
  8. G. J. Klinker, S. A. Shafer, T. Kanabe, “Using a color reflection model to separate highlights from object color,” in Proceedings of the First International Conference on Computer Vision (ICCV), J. M. Brady, A. Rosenfeld, eds. (Computer Society Press, London, 1987), pp. 145–150.
  9. E. V. Bohn, Introduction to Electromagnetic Fields and Waves (Addison-Wesley, Reading, Mass., 1967), Chaps. 2–5.
  10. L. B. Wolff, “Diffuse-reflectance model for smooth dielectric surfaces,” J. Opt. Soc. Am. A 11, 2956–2968 (1994).
    [CrossRef]
  11. T. Horiuchi, Y. Tomita, R. Kammel, “Surface roughness measurement with speckle intensity distribution detected using a linear image sensor,” Jpn. J. Appl. Phys. 21, L743–L745 (1982).
    [CrossRef]
  12. J. C. Stover, S. A. Serati, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).
    [CrossRef]
  13. J. Ohtsubo, “Measurement of roughness properties of diamond-turned metal surfaces using light-scattering method,” J. Opt. Soc. Am. A 3, 982–987 (1986).
    [CrossRef]
  14. J. Q. Whitley, R. P. Kusy, M. J. Mayhew, J. E. Buckthat, “Surface roughness of stainless steel and electroformed nickel standards using a He–Ne laser,” Opt. Laser Technol. 19, 189–196 (1987).
    [CrossRef]
  15. M. Mitsui, O. Kizuka, “Development of a high-resolution sensor for surface roughness,” Opt. Eng. 27, 498–502 (1988).
    [CrossRef]
  16. J. Ingers, L. Thibaudeau, “Theory and experiment as tools for assessing surface finish in the UV-visible wavelength region,” in Optical Fabrication and Testing, D. R. Campbell, C. W. Johnson, M. Lorenzen, eds., Proc. SPIE1400, 178–185 (1990).
    [CrossRef]
  17. K. E. Peiponen, T. Tsuboi, “Metal surface roughness and optical reflectance,” Opt. Laser Technol. 22, 127–130 (1990).
    [CrossRef]
  18. E. Marx, T. V. Vorburger, “Direct and inverse problems for light scattering by rough surfaces,” Appl. Opt. 29, 3613–3625 (1990).
    [CrossRef] [PubMed]
  19. F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
    [CrossRef]
  20. M. Kurita, M. Sato, K. Nakano, “A technique for rapidly measuring surface roughness using a laser,” Int. J. Jpn. Soc. Mech. Eng. 35, 335–339 (1992).
  21. P. Beckmann, “Scattering of light by rough surfaces,” Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1967), Vol. 6, pp. 55–69.
  22. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, Mass., 1987), Chap. 5, pp. 70–98.
  23. B. J. Pernick, “Surface roughness measurements with an optical Fourier spectrum analyzer,” Appl. Opt. 18, 796–801 (1979).
    [CrossRef] [PubMed]
  24. T. Miyoshi, K. Saito, “Noncontact measurement of ultraprecision diamond-turned surface roughness,” Bull. Jpn. Soc. Precis. Eng. 23, 182–188 (1989).
  25. C. Gorecki, “Classification of rough surfaces: comparison between two hybrid optical coherent processors,” Opt. Laser Technol. 21, 117–122 (1989).
    [CrossRef]
  26. C. Gorecki, “Optical classification of machined metal surfaces by Fourier spectrum sampling,” Wear 137, 287–298 (1990).
    [CrossRef]
  27. C. Gorecki, “Surface classification by an optoelectronic implementation of the Karhunen–Loève expansion,” Appl. Opt. 30, 4548–4552 (1991).
    [CrossRef] [PubMed]
  28. V. M. Huynh, S. Kurada, W. North, “Texture analysis of rough surfaces using optical Fourier transform,” Meas. Sci. Technol. 2, 831–837 (1991).
    [CrossRef]
  29. H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by means of laser speckle techniques,” Opt. Commun. 16, 68–72 (1976).
    [CrossRef]
  30. H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by using image speckle contrast,” J. Opt. Soc. Am. 66, 1217–1221 (1976).
    [CrossRef]
  31. H. Fujii, T. Asakura, “Roughness measurement of metal surfaces using laser speckle,” J. Opt. Soc. Am. 67, 1171–1176 (1977).
    [CrossRef]
  32. D. Léger, E. Mathieu, J. C. Perrin, “Optical surface roughness determination using speckle correlation technique,” Appl. Opt. 14, 872–877 (1975).
    [CrossRef] [PubMed]
  33. L. X. Cao, T. V. Vorburger, A. G. Lieberman, T. R. Lettieri, “Light-scattering measurement of the rms slopes of rough surfaces,” Appl. Opt. 30, 3221–3227 (1991).
    [CrossRef] [PubMed]
  34. R. Brodmann, M. Allgauer, “Comparison of light scattering from rough surfaces with optical and mechanical profilometry,” in Surface Measurement and Characterization, J. M. Bennett, ed., Proc. SPIE1009, 111–118 (1988).
    [CrossRef]
  35. J. H. Rakels, “Recognized surface finish parameters obtained from diffraction patterns of rough surfaces,” in Surface Measurement and Characterization, J. M. Bennett, ed., Proc. SPIE1009, 119–125 (1988).
  36. K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. of Am. 57, 1105–1114 (1967).
    [CrossRef]
  37. S. K. Nayar, K. Ikeuchi, T. Kanade, “Surface reflection: physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 611–634 (1991).
    [CrossRef]
  38. M. S. Longuet-Higgins, “The statistical analysis of a random, moving surface,” Philos. Trans. R. Soc. London Ser. A 249, 321–387 (1956).
    [CrossRef]
  39. M. V. Berry, J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A. Math. Gen. 10, No. 11, 1809–1821 (1977).
    [CrossRef]

1994

1992

F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
[CrossRef]

M. Kurita, M. Sato, K. Nakano, “A technique for rapidly measuring surface roughness using a laser,” Int. J. Jpn. Soc. Mech. Eng. 35, 335–339 (1992).

1991

C. Gorecki, “Surface classification by an optoelectronic implementation of the Karhunen–Loève expansion,” Appl. Opt. 30, 4548–4552 (1991).
[CrossRef] [PubMed]

V. M. Huynh, S. Kurada, W. North, “Texture analysis of rough surfaces using optical Fourier transform,” Meas. Sci. Technol. 2, 831–837 (1991).
[CrossRef]

L. X. Cao, T. V. Vorburger, A. G. Lieberman, T. R. Lettieri, “Light-scattering measurement of the rms slopes of rough surfaces,” Appl. Opt. 30, 3221–3227 (1991).
[CrossRef] [PubMed]

S. K. Nayar, K. Ikeuchi, T. Kanade, “Surface reflection: physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 611–634 (1991).
[CrossRef]

1990

C. Gorecki, “Optical classification of machined metal surfaces by Fourier spectrum sampling,” Wear 137, 287–298 (1990).
[CrossRef]

K. E. Peiponen, T. Tsuboi, “Metal surface roughness and optical reflectance,” Opt. Laser Technol. 22, 127–130 (1990).
[CrossRef]

E. Marx, T. V. Vorburger, “Direct and inverse problems for light scattering by rough surfaces,” Appl. Opt. 29, 3613–3625 (1990).
[CrossRef] [PubMed]

1989

T. Miyoshi, K. Saito, “Noncontact measurement of ultraprecision diamond-turned surface roughness,” Bull. Jpn. Soc. Precis. Eng. 23, 182–188 (1989).

C. Gorecki, “Classification of rough surfaces: comparison between two hybrid optical coherent processors,” Opt. Laser Technol. 21, 117–122 (1989).
[CrossRef]

1988

M. Mitsui, O. Kizuka, “Development of a high-resolution sensor for surface roughness,” Opt. Eng. 27, 498–502 (1988).
[CrossRef]

1987

J. Q. Whitley, R. P. Kusy, M. J. Mayhew, J. E. Buckthat, “Surface roughness of stainless steel and electroformed nickel standards using a He–Ne laser,” Opt. Laser Technol. 19, 189–196 (1987).
[CrossRef]

1986

1985

S. A. Shafer, “Using color to separate reflection components,” Color Res. Appl. 10, 210–218 (1985).
[CrossRef]

1984

J. C. Stover, S. A. Serati, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).
[CrossRef]

1982

T. Horiuchi, Y. Tomita, R. Kammel, “Surface roughness measurement with speckle intensity distribution detected using a linear image sensor,” Jpn. J. Appl. Phys. 21, L743–L745 (1982).
[CrossRef]

1981

R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307–316 (1981).
[CrossRef]

1979

1977

H. Fujii, T. Asakura, “Roughness measurement of metal surfaces using laser speckle,” J. Opt. Soc. Am. 67, 1171–1176 (1977).
[CrossRef]

M. V. Berry, J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A. Math. Gen. 10, No. 11, 1809–1821 (1977).
[CrossRef]

1976

H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by means of laser speckle techniques,” Opt. Commun. 16, 68–72 (1976).
[CrossRef]

H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by using image speckle contrast,” J. Opt. Soc. Am. 66, 1217–1221 (1976).
[CrossRef]

1975

1967

K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. of Am. 57, 1105–1114 (1967).
[CrossRef]

1956

M. S. Longuet-Higgins, “The statistical analysis of a random, moving surface,” Philos. Trans. R. Soc. London Ser. A 249, 321–387 (1956).
[CrossRef]

Allgauer, M.

R. Brodmann, M. Allgauer, “Comparison of light scattering from rough surfaces with optical and mechanical profilometry,” in Surface Measurement and Characterization, J. M. Bennett, ed., Proc. SPIE1009, 111–118 (1988).
[CrossRef]

Asakura, T.

F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
[CrossRef]

H. Fujii, T. Asakura, “Roughness measurement of metal surfaces using laser speckle,” J. Opt. Soc. Am. 67, 1171–1176 (1977).
[CrossRef]

H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by using image speckle contrast,” J. Opt. Soc. Am. 66, 1217–1221 (1976).
[CrossRef]

H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by means of laser speckle techniques,” Opt. Commun. 16, 68–72 (1976).
[CrossRef]

Beckmann, P.

P. Beckmann, “Scattering of light by rough surfaces,” Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1967), Vol. 6, pp. 55–69.

P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, Mass., 1987), Chap. 5, pp. 70–98.

Berry, M. V.

M. V. Berry, J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A. Math. Gen. 10, No. 11, 1809–1821 (1977).
[CrossRef]

Binford, T. O.

G. Healey, T. O. Binford, “The role and use of color in a general vision system,” in DARPA Image Understanding (IUS) Workshop, L. S. Bauman, ed., (Morgan Kaufmann, Los Altos, Calif., 1987), pp. 599–613.

Bohn, E. V.

E. V. Bohn, Introduction to Electromagnetic Fields and Waves (Addison-Wesley, Reading, Mass., 1967), Chaps. 2–5.

Brodmann, R.

R. Brodmann, M. Allgauer, “Comparison of light scattering from rough surfaces with optical and mechanical profilometry,” in Surface Measurement and Characterization, J. M. Bennett, ed., Proc. SPIE1009, 111–118 (1988).
[CrossRef]

Buckthat, J. E.

J. Q. Whitley, R. P. Kusy, M. J. Mayhew, J. E. Buckthat, “Surface roughness of stainless steel and electroformed nickel standards using a He–Ne laser,” Opt. Laser Technol. 19, 189–196 (1987).
[CrossRef]

Cao, L. X.

Cook, R. L.

R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307–316 (1981).
[CrossRef]

Evans, R. M.

R. M. Evans, Eye, Film, and Camera in Color Photography (Wiley, New York, 1959), Chaps. 2–4.

Fujii, H.

Gorecki, C.

C. Gorecki, “Surface classification by an optoelectronic implementation of the Karhunen–Loève expansion,” Appl. Opt. 30, 4548–4552 (1991).
[CrossRef] [PubMed]

C. Gorecki, “Optical classification of machined metal surfaces by Fourier spectrum sampling,” Wear 137, 287–298 (1990).
[CrossRef]

C. Gorecki, “Classification of rough surfaces: comparison between two hybrid optical coherent processors,” Opt. Laser Technol. 21, 117–122 (1989).
[CrossRef]

Gu, C.

F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
[CrossRef]

Hannay, J. H.

M. V. Berry, J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A. Math. Gen. 10, No. 11, 1809–1821 (1977).
[CrossRef]

Healey, G.

G. Healey, T. O. Binford, “The role and use of color in a general vision system,” in DARPA Image Understanding (IUS) Workshop, L. S. Bauman, ed., (Morgan Kaufmann, Los Altos, Calif., 1987), pp. 599–613.

Hecht, H. G.

W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Wiley, New York, 1966), Chaps. 1–3.

Horiuchi, T.

T. Horiuchi, Y. Tomita, R. Kammel, “Surface roughness measurement with speckle intensity distribution detected using a linear image sensor,” Jpn. J. Appl. Phys. 21, L743–L745 (1982).
[CrossRef]

Hunter, R. S.

R. S. Hunter, The Measurement of Appearance (Wiley, New York, 1975), Chaps. 1–6.

Huynh, V. M.

V. M. Huynh, S. Kurada, W. North, “Texture analysis of rough surfaces using optical Fourier transform,” Meas. Sci. Technol. 2, 831–837 (1991).
[CrossRef]

Ikeuchi, K.

S. K. Nayar, K. Ikeuchi, T. Kanade, “Surface reflection: physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 611–634 (1991).
[CrossRef]

Ikonen, K.

F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
[CrossRef]

Ingers, J.

J. Ingers, L. Thibaudeau, “Theory and experiment as tools for assessing surface finish in the UV-visible wavelength region,” in Optical Fabrication and Testing, D. R. Campbell, C. W. Johnson, M. Lorenzen, eds., Proc. SPIE1400, 178–185 (1990).
[CrossRef]

Kammel, R.

T. Horiuchi, Y. Tomita, R. Kammel, “Surface roughness measurement with speckle intensity distribution detected using a linear image sensor,” Jpn. J. Appl. Phys. 21, L743–L745 (1982).
[CrossRef]

Kanabe, T.

G. J. Klinker, S. A. Shafer, T. Kanabe, “Using a color reflection model to separate highlights from object color,” in Proceedings of the First International Conference on Computer Vision (ICCV), J. M. Brady, A. Rosenfeld, eds. (Computer Society Press, London, 1987), pp. 145–150.

Kanade, T.

S. K. Nayar, K. Ikeuchi, T. Kanade, “Surface reflection: physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 611–634 (1991).
[CrossRef]

G. J. Klinker, S. A. Shafer, T. Kanade, “Measurement of gloss from color images,” in Intersociety Color Council (ISCC) 87 Conference on Appearance (ISCC, Virginia, 1987), pp. 9–13.

Kizuka, O.

M. Mitsui, O. Kizuka, “Development of a high-resolution sensor for surface roughness,” Opt. Eng. 27, 498–502 (1988).
[CrossRef]

Klinker, G. J.

G. J. Klinker, S. A. Shafer, T. Kanabe, “Using a color reflection model to separate highlights from object color,” in Proceedings of the First International Conference on Computer Vision (ICCV), J. M. Brady, A. Rosenfeld, eds. (Computer Society Press, London, 1987), pp. 145–150.

G. J. Klinker, S. A. Shafer, T. Kanade, “Measurement of gloss from color images,” in Intersociety Color Council (ISCC) 87 Conference on Appearance (ISCC, Virginia, 1987), pp. 9–13.

Kurada, S.

V. M. Huynh, S. Kurada, W. North, “Texture analysis of rough surfaces using optical Fourier transform,” Meas. Sci. Technol. 2, 831–837 (1991).
[CrossRef]

Kurita, M.

M. Kurita, M. Sato, K. Nakano, “A technique for rapidly measuring surface roughness using a laser,” Int. J. Jpn. Soc. Mech. Eng. 35, 335–339 (1992).

Kusy, R. P.

J. Q. Whitley, R. P. Kusy, M. J. Mayhew, J. E. Buckthat, “Surface roughness of stainless steel and electroformed nickel standards using a He–Ne laser,” Opt. Laser Technol. 19, 189–196 (1987).
[CrossRef]

Léger, D.

Lettieri, T. R.

Lieberman, A. G.

Longuet-Higgins, M. S.

M. S. Longuet-Higgins, “The statistical analysis of a random, moving surface,” Philos. Trans. R. Soc. London Ser. A 249, 321–387 (1956).
[CrossRef]

Marx, E.

Mathieu, E.

Mayhew, M. J.

J. Q. Whitley, R. P. Kusy, M. J. Mayhew, J. E. Buckthat, “Surface roughness of stainless steel and electroformed nickel standards using a He–Ne laser,” Opt. Laser Technol. 19, 189–196 (1987).
[CrossRef]

Mitsui, M.

M. Mitsui, O. Kizuka, “Development of a high-resolution sensor for surface roughness,” Opt. Eng. 27, 498–502 (1988).
[CrossRef]

Miyoshi, T.

T. Miyoshi, K. Saito, “Noncontact measurement of ultraprecision diamond-turned surface roughness,” Bull. Jpn. Soc. Precis. Eng. 23, 182–188 (1989).

Morley, E. J.

F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
[CrossRef]

Nakano, K.

M. Kurita, M. Sato, K. Nakano, “A technique for rapidly measuring surface roughness using a laser,” Int. J. Jpn. Soc. Mech. Eng. 35, 335–339 (1992).

Nayar, S. K.

S. K. Nayar, K. Ikeuchi, T. Kanade, “Surface reflection: physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 611–634 (1991).
[CrossRef]

North, W.

V. M. Huynh, S. Kurada, W. North, “Texture analysis of rough surfaces using optical Fourier transform,” Meas. Sci. Technol. 2, 831–837 (1991).
[CrossRef]

Ohtsubo, J.

Peiponen, K. E.

F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
[CrossRef]

K. E. Peiponen, T. Tsuboi, “Metal surface roughness and optical reflectance,” Opt. Laser Technol. 22, 127–130 (1990).
[CrossRef]

Pernick, B. J.

Perrin, J. C.

Rakels, J. H.

J. H. Rakels, “Recognized surface finish parameters obtained from diffraction patterns of rough surfaces,” in Surface Measurement and Characterization, J. M. Bennett, ed., Proc. SPIE1009, 119–125 (1988).

Saito, K.

T. Miyoshi, K. Saito, “Noncontact measurement of ultraprecision diamond-turned surface roughness,” Bull. Jpn. Soc. Precis. Eng. 23, 182–188 (1989).

Sato, M.

M. Kurita, M. Sato, K. Nakano, “A technique for rapidly measuring surface roughness using a laser,” Int. J. Jpn. Soc. Mech. Eng. 35, 335–339 (1992).

Serati, S. A.

J. C. Stover, S. A. Serati, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).
[CrossRef]

Shafer, S. A.

S. A. Shafer, “Using color to separate reflection components,” Color Res. Appl. 10, 210–218 (1985).
[CrossRef]

G. J. Klinker, S. A. Shafer, T. Kanade, “Measurement of gloss from color images,” in Intersociety Color Council (ISCC) 87 Conference on Appearance (ISCC, Virginia, 1987), pp. 9–13.

G. J. Klinker, S. A. Shafer, T. Kanabe, “Using a color reflection model to separate highlights from object color,” in Proceedings of the First International Conference on Computer Vision (ICCV), J. M. Brady, A. Rosenfeld, eds. (Computer Society Press, London, 1987), pp. 145–150.

Shindo, Y.

H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by using image speckle contrast,” J. Opt. Soc. Am. 66, 1217–1221 (1976).
[CrossRef]

H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by means of laser speckle techniques,” Opt. Commun. 16, 68–72 (1976).
[CrossRef]

Silvennoinen, F.

F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
[CrossRef]

Sparrow, E. M.

K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. of Am. 57, 1105–1114 (1967).
[CrossRef]

Spizzichino, A.

P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, Mass., 1987), Chap. 5, pp. 70–98.

Stover, J. C.

J. C. Stover, S. A. Serati, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).
[CrossRef]

Thibaudeau, L.

J. Ingers, L. Thibaudeau, “Theory and experiment as tools for assessing surface finish in the UV-visible wavelength region,” in Optical Fabrication and Testing, D. R. Campbell, C. W. Johnson, M. Lorenzen, eds., Proc. SPIE1400, 178–185 (1990).
[CrossRef]

Tomita, Y.

T. Horiuchi, Y. Tomita, R. Kammel, “Surface roughness measurement with speckle intensity distribution detected using a linear image sensor,” Jpn. J. Appl. Phys. 21, L743–L745 (1982).
[CrossRef]

Torrance, K. E.

R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307–316 (1981).
[CrossRef]

K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. of Am. 57, 1105–1114 (1967).
[CrossRef]

Tsuboi, T.

K. E. Peiponen, T. Tsuboi, “Metal surface roughness and optical reflectance,” Opt. Laser Technol. 22, 127–130 (1990).
[CrossRef]

Vorburger, T. V.

Wendlandt, W.

W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Wiley, New York, 1966), Chaps. 1–3.

Whitley, J. Q.

J. Q. Whitley, R. P. Kusy, M. J. Mayhew, J. E. Buckthat, “Surface roughness of stainless steel and electroformed nickel standards using a He–Ne laser,” Opt. Laser Technol. 19, 189–196 (1987).
[CrossRef]

Wolff, L. B.

Zhang, Y.

F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
[CrossRef]

Appl. Opt.

Bull. Jpn. Soc. Precis. Eng.

T. Miyoshi, K. Saito, “Noncontact measurement of ultraprecision diamond-turned surface roughness,” Bull. Jpn. Soc. Precis. Eng. 23, 182–188 (1989).

Color Res. Appl.

S. A. Shafer, “Using color to separate reflection components,” Color Res. Appl. 10, 210–218 (1985).
[CrossRef]

Comput. Graph.

R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graph. 15, 307–316 (1981).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

S. K. Nayar, K. Ikeuchi, T. Kanade, “Surface reflection: physical and geometrical perspectives,” IEEE Trans. Pattern Anal. Mach. Intell. 13, 611–634 (1991).
[CrossRef]

Int. J. Jpn. Soc. Mech. Eng.

M. Kurita, M. Sato, K. Nakano, “A technique for rapidly measuring surface roughness using a laser,” Int. J. Jpn. Soc. Mech. Eng. 35, 335–339 (1992).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. of Am.

K. E. Torrance, E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. of Am. 57, 1105–1114 (1967).
[CrossRef]

J. Phys. A. Math. Gen.

M. V. Berry, J. H. Hannay, “Umbilic points on Gaussian random surfaces,” J. Phys. A. Math. Gen. 10, No. 11, 1809–1821 (1977).
[CrossRef]

Jpn. J. Appl. Phys.

T. Horiuchi, Y. Tomita, R. Kammel, “Surface roughness measurement with speckle intensity distribution detected using a linear image sensor,” Jpn. J. Appl. Phys. 21, L743–L745 (1982).
[CrossRef]

Meas. Sci. Technol.

V. M. Huynh, S. Kurada, W. North, “Texture analysis of rough surfaces using optical Fourier transform,” Meas. Sci. Technol. 2, 831–837 (1991).
[CrossRef]

Opt. Commun.

H. Fujii, T. Asakura, Y. Shindo, “Measurement of surface roughness properties by means of laser speckle techniques,” Opt. Commun. 16, 68–72 (1976).
[CrossRef]

Opt. Eng.

J. C. Stover, S. A. Serati, “Calculation of surface statistics from light scatter,” Opt. Eng. 23, 406–412 (1984).
[CrossRef]

M. Mitsui, O. Kizuka, “Development of a high-resolution sensor for surface roughness,” Opt. Eng. 27, 498–502 (1988).
[CrossRef]

Opt. Laser Technol.

J. Q. Whitley, R. P. Kusy, M. J. Mayhew, J. E. Buckthat, “Surface roughness of stainless steel and electroformed nickel standards using a He–Ne laser,” Opt. Laser Technol. 19, 189–196 (1987).
[CrossRef]

C. Gorecki, “Classification of rough surfaces: comparison between two hybrid optical coherent processors,” Opt. Laser Technol. 21, 117–122 (1989).
[CrossRef]

K. E. Peiponen, T. Tsuboi, “Metal surface roughness and optical reflectance,” Opt. Laser Technol. 22, 127–130 (1990).
[CrossRef]

Opt. Lasers Eng.

F. Silvennoinen, K. E. Peiponen, T. Asakura, Y. Zhang, C. Gu, K. Ikonen, E. J. Morley, “Speckle reflectance of cold-rolled aluminum,” Opt. Lasers Eng. 17, 103–109 (1992).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A

M. S. Longuet-Higgins, “The statistical analysis of a random, moving surface,” Philos. Trans. R. Soc. London Ser. A 249, 321–387 (1956).
[CrossRef]

Wear

C. Gorecki, “Optical classification of machined metal surfaces by Fourier spectrum sampling,” Wear 137, 287–298 (1990).
[CrossRef]

Other

R. Brodmann, M. Allgauer, “Comparison of light scattering from rough surfaces with optical and mechanical profilometry,” in Surface Measurement and Characterization, J. M. Bennett, ed., Proc. SPIE1009, 111–118 (1988).
[CrossRef]

J. H. Rakels, “Recognized surface finish parameters obtained from diffraction patterns of rough surfaces,” in Surface Measurement and Characterization, J. M. Bennett, ed., Proc. SPIE1009, 119–125 (1988).

P. Beckmann, “Scattering of light by rough surfaces,” Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1967), Vol. 6, pp. 55–69.

P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, Mass., 1987), Chap. 5, pp. 70–98.

J. Ingers, L. Thibaudeau, “Theory and experiment as tools for assessing surface finish in the UV-visible wavelength region,” in Optical Fabrication and Testing, D. R. Campbell, C. W. Johnson, M. Lorenzen, eds., Proc. SPIE1400, 178–185 (1990).
[CrossRef]

R. M. Evans, Eye, Film, and Camera in Color Photography (Wiley, New York, 1959), Chaps. 2–4.

R. S. Hunter, The Measurement of Appearance (Wiley, New York, 1975), Chaps. 1–6.

W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Wiley, New York, 1966), Chaps. 1–3.

G. Healey, T. O. Binford, “The role and use of color in a general vision system,” in DARPA Image Understanding (IUS) Workshop, L. S. Bauman, ed., (Morgan Kaufmann, Los Altos, Calif., 1987), pp. 599–613.

G. J. Klinker, S. A. Shafer, T. Kanade, “Measurement of gloss from color images,” in Intersociety Color Council (ISCC) 87 Conference on Appearance (ISCC, Virginia, 1987), pp. 9–13.

G. J. Klinker, S. A. Shafer, T. Kanabe, “Using a color reflection model to separate highlights from object color,” in Proceedings of the First International Conference on Computer Vision (ICCV), J. M. Brady, A. Rosenfeld, eds. (Computer Society Press, London, 1987), pp. 145–150.

E. V. Bohn, Introduction to Electromagnetic Fields and Waves (Addison-Wesley, Reading, Mass., 1967), Chaps. 2–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Specular reflection from a random Gaussian surface. (a) A locally flat surface consisting of Gaussian cavities illuminated by a collimated light at a random angle. The viewing angle coincides with the local normal to the surface. (b) Occurrence of a specular glistening point at which the specular normal to the side of a cavity bisects the light rays of incidence and reflection, although the local normal does not. The angle of incidence, parameter θ in the model, is the angle between the ray of incidence and the specular normal. Note that θ has the same magnitude as the angle between local and specular normals. (c) Model predicting an exponential decrease in the density of glistening points as the angle of incidence increases for two choices of the roughness of the surface. The rougher surface, whose correlation length and rms amplitude have larger magnitudes, corresponds to a lower density and a larger angle span of the incidence.

Fig. 2
Fig. 2

(a) Setup used to observe the highlight patterns on a fruit sample (top view). The sample is irradiated by a wide, uniform, and parallel beam aimed at the center of the sample. The scattered light is detected by a digital CCD camera located 10° from the light source. (b) Blown-up image of the sample indicating that the specular normal that bisects the incident and the scattered beams remains constant for all glistening points. The local normals of every glistening point must be calculated on the sample surface. Proportions are not drawn to scale.

Fig. 3
Fig. 3

Images of the fruit samples, the extracted glistening points from the image, and plots of the densities of glistening points as functions of the angle of incidence. In the middle figures the glistening points are shown as black dots. To give an idea of the dimensional proportions of the highlight on the fruit surface, the fruit shape is outlined in gray: (a) lemon, (b) apple, (c) tomato.

Fig. 4
Fig. 4

Laser-scanned microscopic images of the three fruit surfaces: Top, lemon, where the dark dots are cavities; middle, apple, where the bright dots are cavities; bottom, tomato, where the dark elongated dots are cavities.

Tables (1)

Tables Icon

Table 1 Parameters of Surface Roughness Determined with the Highlights Method and with the Microscopic Method

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

h2=hx2+hy2  1
Ax, y, l, σ=σ2 exp-x2+y22l2.
P1p, q, l, σ=l2 exp-p2+q2l24π2σ24π2σ2,
p=dhdx,  q=dhdy
P2r, s, t, l, σ=l6 exp-3r2+8s2-2rt+3t2l432π162π3σ3,
r=2hx2,  s=2hxy,  t=2hy2.
Dl, σ, θ=βexp-tan2 θl24πσ24π2l2.
P2r, s, t, l, σ=l6 exp-3r2+8s2-2rt+3t2l432π162π3σ3.
P2r+t2, r-t2, s, l, σ=l6 exp-2r-t22+r+t22+4s2l416πσ2162π3σ3.
P2ρ, θ, φ l, σ=exp-ρ2l41+cos 2θ+3+cos 2φsin2 θ32πσ2ρ4l6 cos 2θ sin θ162π3σ3.
0exp-ρ2l41+cos 2θ+3+cos 2φsin2 θ32πσ2 ρ4l6 cos 2θ sin θ162 π3σ3dρ=96σ2 cos 2θ sin θl41+cos 2θ+3+cos 2φsin2 θ5/2.
96σ2 cos 2θ sin θ02π11+cos 2θ+3+cos 2φsin2 θ5/2dφl4.
αθ=02π96 cos2θsinθ1+cos2θ+3+cos2ϕsinθ25/2dϕ.
β=20π/4 αθdθ-π/4π/2 αθdθ.

Metrics